Tectonic controls on block rotation and sheeted sill emplacement in the Xigaze Ophiolite (Tibet): the construction mode of slow-spreading and ultraslow-spreading oceanic crusts
Date
2021-01-28Author
Liu, Tong
Concept link
Dick, Henry J. B.
Concept link
Liu, Chuan-Zhou
Concept link
Wu, Fu-Yuan
Concept link
Ji, Wen-Bin
Concept link
Zhang, Chang
Concept link
Zhang, Wei-Qi
Concept link
Zhang, Zhen-Yu
Concept link
Lin, Yin-Zheng
Concept link
Zhang, Zhen
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/27324As published
https://doi.org/10.1029/2020GC009297DOI
10.1029/2020GC009297Abstract
The internal structure of oceanic crusts is not well understood due to the limitation of deep drilling. However, that of ophiolites, i.e., on-land ancient analogs of oceanic lithosphere, could be precisely mapped and measured. The Xigaze ophiolite in Tibet has been regarded as “peculiar”, due to the sheeted sill complex in its upper crust, and non-sheeted diabase sills/dikes crosscutting its mantle and lower crust, which are geometrically different from the primarily vertical sheeted dike complex. Based on extensive field observations, here we present petrological and geochemical data for the Xigaze ophiolite to decipher the origin of sheeted sill complex and its implications for the construction of oceanic crusts. Diabases in the Xigaze ophiolite could be subdivided into sheeted sills, Group 1 non-sheeted dikes, and Group 2 non-sheeted sills, based on their orientations. These diabases cut other lithologies, and hence belong to the latest-stage products. Based on petrological, geochemical, and structural data, we highlight the important role of detachment fault in the generation of sheeted and non-sheeted sills. During the formation of oceanic crust, large block exhumation, multi-stage rotations, and foundering are argued here as key mechanisms for the generation of Xigaze sheeted and non-sheeted dikes/sills, all of which are in the evolution of detachment fault systems. These processes are also not uncommon for asymmetrical segments at modern slow-spreading and ultraslow-spreading ridges, but are rare at symmetrical segments. Due to the evolution of detachment fault, the internal structures of (ultra)slow-spreading ridges are more complex than those at fast-spreading ridges.
Description
Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 22(3), (2021): e2020GC009297, https://doi.org/10.1029/2020GC009297.
Collections
Suggested Citation
Liu, T., Dick, H. J. B., Liu, C., Wu, F., Ji, W., Zhang, C., Zhang, W., Zhang, Z., Lin, Y., & Zhang, Z. (2021). Tectonic controls on block rotation and sheeted sill emplacement in the Xigaze Ophiolite (Tibet): the construction mode of slow-spreading and ultraslow-spreading oceanic crusts. Geochemistry Geophysics Geosystems, 22(3), e2020GC009297.Related items
Showing items related by title, author, creator and subject.
-
Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge
Tao, Chunhui; Seyfried, William E.; Lowell, Robert P.; Liu, Yunlong; Liang, Jin; Guo, Zhikui; Ding, Kang; Zhang, Huatian; Liu, Jia; Qiu, Lei; Egorov, Igor; Liao, Shili; Zhao, Minghui; Zhou, JianPing; Deng, Xianming; Li, Huaiming; Wang, Hanchuang; Cai, Wei; Zhang, Guoyin; Zhou, Hongwei; Lin, Jian; Li, Wei (Nature Research, 2020-03-10)Coupled magmatic and tectonic activity plays an important role in high-temperature hydrothermal circulation at mid-ocean ridges. The circulation patterns for such systems have been elucidated by microearthquakes and ... -
Impact of shelf valleys on the spread of surface-trapped river plumes
Xiao, Canbo; Zhang, Weifeng G.; Chen, Ying (American Meteorological Society, 2021-01-01)This study focuses on mechanisms of shelf valley bathymetry affecting the spread of riverine freshwater in the nearshore region. In the context of Changjiang River, a numerical model is used with different no-tide idealized ... -
Hydrothermal exploration of the Fonualei Rift and Spreading Center and the Northeast Lau Spreading Center
German, Christopher R.; Resing, Joseph A.; Prien, R. D.; Walker, Sharon L.; Edmonds, Henrietta N.; Langmuir, Charles H. (American Geophysical Union, 2006-11-29)We report evidence for active hydrothermal venting along two back-arc spreading centers of the NE Lau Basin: the Fonualei Rift and Spreading Center (FRSC) and the Northeast Lau Spreading Center (NELSC). The ridge segments ...