Microtubule dynamics in cell division : exploring living cells with polarized light microscopy

Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Mitosis
Spindle fibers
Dynamic equilibrium
Colchicine
Chromosome movement
Birefringence
Abstract
This Perspective is an account of my early experience while I studied the dynamic organization and behavior of the mitotic spindle and its submicroscopic filaments using polarized light microscopy. The birefringence of spindle filaments in normally dividing plant and animal cells, and those treated by various agents, revealed: A) the reality of spindle fibers and fibrils in healthy living cells; B) the labile, dynamic nature of the molecular filaments making up the spindle fibers; C) the mode of fibrogenesis and action of orienting centers; and D) force-generating properties based on the disassembly and assembly of the fibrils. These studies, which were carried out directly on living cells using improved polarizing microscopes, in fact, predicted the reversible assembly properties of isolated microtubules.
Description
Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Cell and Developmental Biology 24 (2008): 1-28, doi:10.1146/annurev.cellbio.24.110707.175323.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name