The neutrally buoyant sediment trap: two decades of progress
Date
2020-05-21Author
Estapa, Margaret L.
Concept link
Valdes, James R.
Concept link
Tradd, Kaitlyn
Concept link
Sugar, Jackson
Concept link
Omand, Melissa M.
Concept link
Buesseler, Ken O.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/26927As published
https://doi.org/10.1175/JTECH-D-19-0118.1DOI
10.1175/JTECH-D-19-0118.1Keyword
In situ oceanic observations; Instrumentation/sensors; Measurements; Profilers, oceanic; SamplingAbstract
The biological carbon flux from the ocean’s surface into its interior has traditionally been sampled by sediment traps, which physically intercept sinking particulate matter. However, the manner in which a sediment trap interacts with the flow field around it can introduce hydrodynamic biases, motivating the development of neutral, self-ballasting trap designs. Here, the performance of one of these designs, the neutrally buoyant sediment trap (NBST), is described and evaluated. The NBST has been successfully used in a number of scientific studies since a prototype was last described in the literature two decades ago, with extensive modifications in subsequent years. Originated at Woods Hole Oceanographic Institution, the NBST is built around a profiling float and carries cylindrical collection tubes, a feature that distinguishes it from other neutral traps described in the literature. This paper documents changes to the device that have been implemented over the last two decades, including wider trap tubes; Iridium Communications, Inc., satellite communications; and the addition of polyacrylamide gel collectors and optical sedimentation sensors. Information is also provided with the intent of aiding the development of similar devices by other researchers, including the present adaptation of the concept to utilize commercially available profiling float hardware. The performance of NBSTs built around commercial profiling floats is comparable to NBSTs built around customized floats, albeit with some additional operational considerations. Data from recent field studies comparing NBSTs and traditional, surface-tethered sediment traps are used to illustrate the performance of the instrument design. Potential improvements to the design that remain to be incorporated through future work are also outlined.
Description
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estapa, M., Valdes, J., Tradd, K., Sugar, J., Omand, M., & Buesseler, K. The neutrally buoyant sediment trap: two decades of progress. Journal of Atmospheric and Oceanic Technology, 37(6), (2020): 957-973, https://doi.org/10.1175/JTECH-D-19-0118.1.
Collections
Suggested Citation
Estapa, M., Valdes, J., Tradd, K., Sugar, J., Omand, M., & Buesseler, K. (2020). The neutrally buoyant sediment trap: two decades of progress. Journal of Atmospheric and Oceanic Technology, 37(6), 957-973.The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Understanding the ocean carbon and sulfur cycles in the context of a variable ocean : a study of anthropogenic carbon storage and dimethylsulfide production in the Atlantic Ocean
Levine, Naomi M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-02)Anthropogenic activity is rapidly changing the global climate through the emission of carbon dioxide. Ocean carbon and sulfur cycles have the potential to impact global climate directly and through feedback loops. Numerical ... -
Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean : a modeling study
Arruda, R.; Calil, Paulo H. R.; Bianchi, A. A.; Doney, Scott C.; Gruber, Nicolas; Lima, Ivan D.; Turi, G. (Copernicus Publications on behalf of the European Geosciences Union, 2015-10-12)We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the ... -
Ocean Network Information Center (OCEANIC) developing an online ocean information system
Churgin, James (IAMSLIC, 1989)