Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities

Date
2021-02-09Author
Coesel, Sacha N.
Concept link
Durham, Bryndan P.
Concept link
Groussman, Ryan D.
Concept link
Hu, Sarah K.
Concept link
Caron, David A.
Concept link
Morales, Rhonda L.
Concept link
Ribalet, François
Concept link
Armbrust, E. Virginia
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/26926As published
https://doi.org/10.1073/pnas.2011038118DOI
10.1073/pnas.2011038118Abstract
The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.
Description
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coesel, S. N., Durham, B. P., Groussman, R. D., Hu, S. K., Caron, D. A., Morales, R. L., Ribalet, F., & Armbrust, E. V. Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proceedings of the National Academy of Sciences of the United States of America, 118(6), (2021): e2011038118, https://doi.org/10.1073./pnas.2011038118.
Collections
Suggested Citation
Coesel, S. N., Durham, B. P., Groussman, R. D., Hu, S. K., Caron, D. A., Morales, R. L., Ribalet, F., & Armbrust, E. V. (2021). Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proceedings of the National Academy of Sciences of the United States of America, 118(6), e2011038118.The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) : illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing
Keeling, Patrick J.; Burki, Fabien; Wilcox, Heather M.; Allam, Bassem; Allen, Eric E.; Amaral-Zettler, Linda A.; Armbrust, E. Virginia; Archibald, John M.; Bharti, Arvind K.; Bell, Callum J.; Beszteri, Bank; Bidle, Kay D.; Cameron, Connor T.; Campbell, Lisa; Caron, David A.; Cattolico, Rose Ann; Collier, Jackie L.; Coyne, Kathryn J.; Davy, Simon K.; Deschamps, Phillipe; Dyhrman, Sonya T.; Edvardsen, Bente; Gates, Ruth D.; Gobler, Christopher J.; Greenwood, Spencer J.; Guida, Stephanie M.; Jacobi, Jennifer L.; Jakobsen, Kjetill S.; James, Erick R.; Jenkins, Bethany D.; John, Uwe; Johnson, Matthew D.; Juhl, Andrew R.; Kamp, Anja; Katz, Laura A.; Kiene, Ronald P.; Kudryavtsev, Alexander N.; Leander, Brian S.; Lin, Senjie; Lovejoy, Connie; Lynn, Denis; Marchetti, Adrian; McManus, George; Nedelcu, Aurora M.; Menden-Deuer, Susanne; Miceli, Cristina; Mock, Thomas; Montresor, Marina; Moran, Mary Ann; Murray, Shauna A.; Nadathur, Govind; Nagai, Satoshi; Ngam, Peter B.; Palenik, Brian; Pawlowski, Jan; Petroni, Giulio; Piganeau, Gwenael; Posewitz, Matthew C.; Rengefors, Karin; Romano, Giovanna; Rumpho, Mary E.; Rynearson, Tatiana A.; Schilling, Kelly B.; Schroeder, Declan C.; Simpson, Alastair G. B.; Slamovits, Claudio H.; Smith, David R.; Smith, G. Jason; Smith, Sarah R.; Sosik, Heidi M.; Stief, Peter; Theriot, Edward; Twary, Scott N.; Umale, Pooja E.; Vaulot, Daniel; Wawrik, Boris; Wheeler, Glen L.; Wilson, William H.; Xu, Yan; Zingone, Adriana; Worden, Alexandra Z. (Public Library of Science, 2014-06-24)Microbial ecology is plagued by problems of an abstract nature. Cell sizes are so small and population sizes so large that both are virtually incomprehensible. Niches are so far from our everyday experience as to make their ... -
Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life
Parfrey, Laura Wegener; Grant, Jessica; Tekle, Yonas I.; Lasek-Nesselquist, Erica; Morrison, Hilary G.; Sogin, Mitchell L.; Patterson, David J.; Katz, Laura A. (2010-06-01)An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided ... -
Evaluating support for the current classification of eukaryotic diversity
Parfrey, Laura Wegener; Barbero, Erika; Lasser, Elyse; Dunthorn, Micah; Bhattacharya, Debashish; Patterson, David J.; Katz, Laura A. (Public Library of Science (PLoS), 2006-12-22)Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed ...