Using tracer variance decay to quantify variability of salinity mixing in the Hudson River Estuary

View/ Open
Date
2020-11-12Author
Warner, John C.
Concept link
Geyer, W. Rockwell
Concept link
Ralston, David K.
Concept link
Kalra, Tarandeep S.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/26884As published
https://doi.org/10.1029/2020JC016096DOI
10.1029/2020JC016096Abstract
The salinity structure in an estuary is controlled by time‐dependent mixing processes. However, the locations and temporal variability of where significant mixing occurs is not well‐understood. Here we utilize a tracer variance approach to demonstrate the spatial and temporal structure of salinity mixing in the Hudson River Estuary. We run a 4‐month hydrodynamic simulation of the tides, currents, and salinity that captures the spring‐neap tidal variability as well as wind‐driven and freshwater flow events. On a spring‐neap time scale, salinity variance dissipation (mixing) occurs predominantly during the transition from neap to spring tides. On a tidal time scale, 60% of the salinity variance dissipation occurs during ebb tides and 40% during flood tides. Spatially, mixing during ebbs occurs primarily where lateral bottom salinity fronts intersect the bed at the transition from the main channel to adjacent shoals. During ebbs, these lateral fronts form seaward of constrictions located at multiple locations along the estuary. During floods, mixing is generated by a shear layer elevated in the water column at the top of the mixed bottom boundary layer, where variations in the along channel density gradients locally enhance the baroclinic pressure gradient leading to stronger vertical shear and more mixing. For both ebb and flood, the mixing occurs at the location of overlap of strong vertical stratification and eddy diffusivity, not at the maximum of either of those quantities. This understanding lends a new insight to the spatial and time dependence of the estuarine salinity structure.
Description
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Warner, J. C., Geyer, W. R., Ralston, D. K., & Kalra, T. Using tracer variance decay to quantify variability of salinity mixing in the Hudson River Estuary. Journal of Geophysical Research: Oceans, 125(12), (2020): e2020JC016096, https://doi.org/10.1029/2020JC016096.
Suggested Citation
Warner, J. C., Geyer, W. R., Ralston, D. K., & Kalra, T. (2020). Using tracer variance decay to quantify variability of salinity mixing in the Hudson River Estuary. Journal of Geophysical Research: Oceans, 125(12), e2020JC016096.The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Bathymetric controls on sediment transport in the Hudson River estuary : lateral asymmetry and frontal trapping
Ralston, David K.; Geyer, W. Rockwell; Warner, John C. (American Geophysical Union, 2012-10-17)Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple ... -
Sediment transport due to extreme events : the Hudson River estuary after tropical storms Irene and Lee
Ralston, David K.; Warner, John C.; Geyer, W. Rockwell; Wall, Gary R. (John Wiley & Sons, 2013-10-18)Tropical Storms Irene and Lee in 2011 produced intense precipitation and flooding in the U.S. Northeast, including the Hudson River watershed. Sediment input to the Hudson River was approximately 2.7 megaton, about 5 times ... -
Sediment deposition in the lower Hudson River estuary
Woodruff, Jonathan D. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999-09)This study uses geophysical and sedimentological data collected from the Lower Hudson River estuary to identify the depositional response of the estuary to high river discharge events. Erosional and depositional environments ...