• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Quantifying the contribution of ship noise to the underwater sound field

    Thumbnail
    View/Open
    Article (4.978Mb)
    Date
    2020-12-21
    Author
    Shajahan, Najeem  Concept link
    Barclay, David R.  Concept link
    Lin, Ying-Tsong  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/26837
    As published
    https://doi.org/10.1121/10.0002922
    DOI
    10.1121/10.0002922
    Abstract
    The ambient sound field in the ocean can be decomposed into a linear combination of two independent fields attributable to wind-generated wave action at the surface and noise radiated by ships. The vertical coherence (the cross-spectrum normalized by the power spectra) and normalized directionality of wind-generated noise in the ocean are stationary in time, do not vary with source strength and spectral characteristics, and depend primarily on the local sound speed and the geoacoustic properties which define the propagation environment. The contribution to the noise coherence due to passing vessels depends on the range between the source and receiver, the propagation environment, and the effective bandwidth of the characteristic source spectrum. Using noise coherence models for both types of the sources, an inversion scheme is developed for the relative and absolute contribution of frequency dependent ship noise to the total sound field. A month-long continuous ambient sound recording collected on a pair of vertically aligned hydrophones near Alvin Canyon at the New England shelf break is decomposed into time-dependent ship noise and wind-driven noise power spectra. The processing technique can be used to quantify the impact of human activity on the sound field above the natural dynamic background noise, or to eliminate ship noise from a passive acoustic monitoring data set.
    Description
    Author Posting. © Acoustical Society of America, 2020. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 148(6), (2020): 3863-3872, https://doi.org/10.1121/10.0002922.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Shajahan, N., Barclay, D. R., & Lin, Y. (2020). Quantifying the contribution of ship noise to the underwater sound field. Journal of the Acoustical Society of America, 148(6), 3863-3872.
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo