Observed eddy-internal wave interactions in the Southern Ocean

View/ Open
Date
2020-10-01Author
Cusack, Jesse M.
Concept link
Brearley, J. Alexander
Concept link
Naveira Garabato, Alberto C.
Concept link
Smeed, David A.
Concept link
Polzin, Kurt L.
Concept link
Velzeboer, Nick
Concept link
Shakespeare, Callum J.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/26815As published
https://doi.org/10.1175/JPO-D-20-0001.1DOI
10.1175/JPO-D-20-0001.1Keyword
Southern Ocean; Eddies; Internal waves; TurbulenceAbstract
The physical mechanisms that remove energy from the Southern Ocean’s vigorous mesoscale eddy field are not well understood. One proposed mechanism is direct energy transfer to the internal wave field in the ocean interior, via eddy-induced straining and shearing of preexisting internal waves. The magnitude, vertical structure, and temporal variability of the rate of energy transfer between eddies and internal waves is quantified from a 14-month deployment of a mooring cluster in the Scotia Sea. Velocity and buoyancy observations are decomposed into wave and eddy components, and the energy transfer is estimated using the Reynolds-averaged energy equation. We find that eddies gain energy from the internal wave field at a rate of −2.2 ± 0.6 mW m−2, integrated from the bottom to 566 m below the surface. This result can be decomposed into a positive (eddy to wave) component, equal to 0.2 ± 0.1 mW m−2, driven by horizontal straining of internal waves, and a negative (wave to eddy) component, equal to −2.5 ± 0.6 mW m−2, driven by vertical shearing of the wave spectrum. Temporal variability of the transfer rate is much greater than the mean value. Close to topography, large energy transfers are associated with low-frequency buoyancy fluxes, the underpinning physics of which do not conform to linear wave dynamics and are thereby in need of further research. Our work suggests that eddy–internal wave interactions may play a significant role in the energy balance of the Southern Ocean mesoscale eddy and internal wave fields.
Description
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Brearley, J. A., Garabato, A. C. N., Smeed, D. A., Polzin, K. L., Velzeboer, N., & Shakespeare, C. J. Observed eddy-internal wave interactions in the Southern Ocean. Journal of Physical Oceanography, 50(10), (2020): 3042-3062, doi:10.1175/JPO-D-20-0001.1.
Collections
Suggested Citation
Cusack, J. M., Brearley, J. A., Garabato, A. C. N., Smeed, D. A., Polzin, K. L., Velzeboer, N., & Shakespeare, C. J. (2020). Observed eddy-internal wave interactions in the Southern Ocean. Journal of Physical Oceanography, 50(10), 3042-3062.The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean
Nikurashin, Maxim; Ferrari, Raffaele; Grisouard, Nicolas; Polzin, Kurt L. (American Meteorological Society, 2014-11)Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a kilometer-thick layer above rough bottom topography collocated with the deep-reaching fronts of the Antarctic Circumpolar ... -
Data collected daily along the ship track in JGOFS format from ARSV Laurence M. Gould and RVIB Nathaniel B. Palmer cruises to the Southern Ocean from 2001-2003 as part of the Southern Ocean GLOBEC project.
Beardsley, Robert C; Costa, Daniel P.; Limeburner, Richard; Torres, Joseph J.; Wiebe, Peter H. (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-03-27)Data collected daily along the ship track in JGOFS format from ARSV Laurence M. Gould and RVIB Nathaniel B. Palmer cruises to the Southern Ocean from 2001-2003 as part of the Southern Ocean GLOBEC project For a complete ... -
Southern Ocean 2001 moorings: depth and pressure vs. time from ARSV Laurence M. Gould LMG0103, LMG0201A in the Southern Ocean from 2001-2002 (SOGLOBEC project)
Beardsley, Robert C; Limeburner, Richard (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-05-18)Southern Ocean 2001 moorings: depth and pressure vs. time from ARSV Laurence M. Gould LMG0103, LMG0201A in the Southern Ocean from 2001-2002. For a complete list of measurements, refer to the full dataset description in ...