Ancestral absence of electron transport chains in Patescibacteria and DPANN

Date
2020-08-17Author
Beam, Jacob P.
Concept link
Becraft, Eric D.
Concept link
Brown, Julia M.
Concept link
Schulz, Frederik
Concept link
Jarett, Jessica K.
Concept link
Bezuidt, Oliver
Concept link
Poulton, Nicole J.
Concept link
Clark, Kayla
Concept link
Dunfield, Peter F.
Concept link
Ravin, Nikolai V.
Concept link
Spear, John R.
Concept link
Hedlund, Brian P.
Concept link
Kormas, Konstantinos Ar.
Concept link
Sievert, Stefan M.
Concept link
Elshahed, Mostafa S.
Concept link
Barton, Hazel A.
Concept link
Stott, Matthew B.
Concept link
Eisen, Jonathan A.
Concept link
Moser, Duane P.
Concept link
Onstott, Tullis C.
Concept link
Woyke, Tanja
Concept link
Stepanauskas, Ramunas
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/26265DOI
10.3389/fmicb.2020.01848Keyword
Bacteria; Archaea; evolution; genomics fermentation; respiration; oxidoreductasesAbstract
Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell–cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.
Description
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Beam, J. P., Becraft, E. D., Brown, J. M., Schulz, F., Jarett, J. K., Bezuidt, O., Poulton, N. J., Clark, K., Dunfield, P. F., Ravin, N. V., Spear, J. R., Hedlund, B. P., Kormas, K. A., Sievert, S. M., Elshahed, M. S., Barton, H. A., Stott, M. B., Eisen, J. A., Moser, D. P., Onstott, T. C., Woyke, T., & Stepanauskas, R. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Frontiers in Microbiology, 11, (2020): 1848, doi:10.3389/fmicb.2020.01848.
Collections
Suggested Citation
Beam, J. P., Becraft, E. D., Brown, J. M., Schulz, F., Jarett, J. K., Bezuidt, O., Poulton, N. J., Clark, K., Dunfield, P. F., Ravin, N. V., Spear, J. R., Hedlund, B. P., Kormas, K. A., Sievert, S. M., Elshahed, M. S., Barton, H. A., Stott, M. B., Eisen, J. A., Moser, D. P., Onstott, T. C., Woyke, T., & Stepanauskas, R. (2020). Ancestral absence of electron transport chains in Patescibacteria and DPANN. Frontiers in Microbiology, 11, 1848.The following license files are associated with this item: