Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

View/ Open
Date
2008-05-10Author
Pohlman, John W.
Concept link
Ruppel, Carolyn D.
Concept link
Hutchinson, Deborah R.
Concept link
Downer, R.
Concept link
Coffin, Richard B.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/2618As published
https://doi.org/10.1016/j.marpetgeo.2008.01.016DOI
10.1016/j.marpetgeo.2008.01.016Keyword
Gas hydrate; Methane; Anaerobic methane oxidation; Sulfate; Brine; Gulf of MexicoAbstract
Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum δ13C dissolved inorganic carbon (DIC) values of −55.9‰ to −64.8‰ at the sulfate–methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the δ13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.
Description
This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 25 (2008): 942-951, doi:10.1016/j.marpetgeo.2008.01.016.
Collections
Suggested Citation
Marine and Petroleum Geology 25 (2008): 942-951Related items
Showing items related by title, author, creator and subject.
-
Modeling sulfate reduction in methane hydrate-bearing continental margin sediments : does a sulfate-methane transition require anaerobic oxidation of methane?
Malinverno, Alberto; Pohlman, John W. (American Geophysical Union, 2011-07-12)The sulfate-methane transition (SMT), a biogeochemical zone where sulfate and methane are metabolized, is commonly observed at shallow depths (1–30 mbsf) in methane-bearing marine sediments. Two processes consume sulfate ... -
Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments
Orphan, Victoria J.; Hinrichs, Kai-Uwe; Ussler, William; Paull, Charles K.; Taylor, L. T.; Sylva, Sean P.; Hayes, John M.; DeLong, Edward F. (American Society for Microbiology, 2001-04)The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and ... -
Using carbon isotope fractionation to constrain the extent of methane dissolution into the water column surrounding a natural hydrocarbon gas seep in the northern Gulf of Mexico
Leonte, Mihai; Wang, Binbin; Socolofsky, Scott A.; Mau, Susan; Breier, John A.; Kessler, John D. (American Geophysical Union, 2018-10-20)A gas bubble seep located in the northern Gulf of Mexico was investigated over several days to determine whether changes in the stable carbon isotopic ratio of methane can be used as a tracer for methane dissolution through ...