Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin

Thumbnail Image
Date
2009-02
Authors
Craddock, Paul R.
Linked Authors
Alternative Title
As Published
Date Created
Location
Eastern Manus Basin
Manus Spreading Center
DOI
10.1575/1912/2609
Replaced By
Keywords
Hydrothermal vents
Sea-floor spreading
Melville (Ship) Cruise MGLN06MV
Abstract
Systematic differences in trace element compositions (rare earth element (REE), heavy metal, metalloid concentrations) of seafloor vent fluids and related deposits from hydrothermal systems in the Manus back–arc basin (Eastern Manus Basin, EMB and Manus Spreading Center, MSC) are used to investigate processes that affect their formation. Processes responsible for observed differences in fluids and deposits from distinct geologic settings include (a) fluid–rock interaction (with temperature, pressure and crustal composition as variables), (b) magmatic acid volatile input and, (c) local seawater entrainment and mixing with hydrothermal fluids, coupled with sulfide precipitation and metal remobilization. REE distributions in vent fluids in the Manus Basin exhibit a wide range of chondrite-normalized patterns that contrast with the relatively uniform distributions observed in mid-ocean ridge vent fluids. This heterogeneity is attributed to marked differences in fluid pH and fluoride and sulfate concentrations that significantly affect REE solubility. The data indicate that REEs can be used as indicators of the styles of magmatic acid volatile input in back-arc hydrothermal systems. Anhydrite in deposits record the same range of REE patterns, suggesting that REE distributions preserved in anhydrite can be used as indicators of past magmatic acid volatile input. Vent fluid heavy metal and metalloid concentrations also exhibit considerable differences. High metal concentrations in EMB versus MSC vent fluids reflect low pH, largely from input of magmatic acid volatiles (indicated by fluoride concentrations greater than seawater). In EMB, metal concentrations are locally affected by dissolution of previously deposited sulfide owing to low pH conditions affected by magmatic acid volatile input or seawater entrainment and mixing with hydrothermal fluid that leads to sulfide precipitation and secondary acidity generation. Massive sulfide deposits in the Manus Basin exhibit a wide range of mineral compositions and heavy metal enrichments. The formation of Zn-rich (sphalerite/wurtzite) deposits in the MSC and of Cu-Fe and Cu-As-rich (chalcopyrite, tennantite) deposits in the EMB reflects differences in the conditions of sulfide precipitation (temperature, pH) and in metal concentrations. The data suggest that heavy metal and metalloid distributions in massive sulfide deposits can be used as indicators of the conditions of vent deposit formation.
Description
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009
Embargo Date
Citation
Craddock, P. R. (2009). Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin [Doctoral thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution]. Woods Hole Open Access Server. https://doi.org/10.1575/1912/2609
Cruises
Cruise ID
Cruise DOI
Vessel Name