• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    On the pathways of the return flow of the meridional overturning circulation in the tropical Atlantic

    Thumbnail
    View/Open
    Jochum_thesis.pdf (11.80Mb)
    Date
    2002-06
    Author
    Jochum, Markus  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2601
    Location
    Tropical Atlantic Ocean
    DOI
    10.1575/1912/2601
    Keyword
     Ocean currents; Ocean circulation 
    Abstract
    A numerical model of the tropical Atlantic ocean is used to investigate the upper layer pathways of the Meridional Overturning Circulation (MOC) in the tropical Atlantic. The main focus of this thesis is on those parts of the tropical circulation that are thought to be important for the MOC return flow, but whose dynamics have not been understood yet. It is shown how the particular structure of the tropical gyre and the MOC act to inhibit the flow of North Atlantic water into the equatorial thermocline. As a result, the upper layers of the tropical Atlantic are mainly fed by water from the South Atlantic. The processes that carry the South Atlantic water across the tropical Atlantic into the North Atlantic as part of the MOC are described here, and three processes that were hitherto not understood are explained as follows: The North Brazil Current rings are created as the result of the reflection of Rossby waves at the South American coast. These Rossby waves are generated by the barotropically unstable North Equatorial Countercurrent. The deep structure of the rings can be explained by merger of the wave's anticyclones with the deeper intermediate eddies that are generated as the intermediate western boundary current crosses the equator. The bands of strong zonal velocity in intermediate depths along the equator have hitherto been explained as intermediate currents. Here, an alternative interpretation of the observations is offered: The Eulerian mean flow along the equator is negligible and the observations are the signature of strong seasonal Rossby waves. The previous interpretation of the observations can then be explained as aliasing of the tropical wave field. The Tsuchyia Jets are driven by the Eliassen-Palm flux of the tropical instability waves. The equatorial current system with its strong shears is unstable and generates tropical instability waves. These waves cause a poleward temperature flux which steepens the isotherms which in turn generates are geostrophically balanced zonal flow. In the eastern part of the basin this zonal flow feeds the southeastward flow of the equatorial gyre.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2002
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Jochum, Markus, "On the pathways of the return flow of the meridional overturning circulation in the tropical Atlantic", 2002-06, DOI:10.1575/1912/2601, https://hdl.handle.net/1912/2601
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Oceanic fluxes of mass, heat, and freshwater : a global estimate and perspective 

      Macdonald, Alison M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1995-08)
      Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional ...
    • Thumbnail

      Adaptive error estimation in linearized ocean general circulation models 

      Chechelnitsky, Michael Y. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999-06)
      Data assimilation methods, such as the Kalman filter, are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. In this study we address the problem of estimating ...
    • Thumbnail

      On the world ocean circulation. Volume I, some global features/North Atlantic circulation 

      Schmitz, William J. (Woods Hole Oceanographic Institution, 1996-06)
      This is the first volume of a "final report" that summarizes, often in a speculative vein, what I have learned over the past 35 years or so about large-scale, low-frequency ocean currents, primarily with support from the ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo