• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Inverse methods and results from the 1981 Ocean Acoustic Tomography Experiment

    Thumbnail
    View/Open
    Cornuelle_thesis.pdf (11.81Mb)
    Date
    1983-04
    Author
    Cornuelle, Bruce D.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2596
    Location
    26°N, 70°W
    DOI
    10.1575/1912/2596
    Keyword
     Underwater acoustics; Sound transmission 
    Abstract
    Ocean acoustic tomography was proposed in 1978 by Munk and Wunsch as a possible technique for monitoring the evolution of temperature, density, and current fields over large regions. In 1981, the Ocean Tomography Group deployed four 224 Hz acoustic sources and five receivers in an array which fit within a box 300 km. on a side centered on 26°N, 70°W (southwest of Bermuda). The experiment was intended both to demonstrate the practicality of tomography as an observation tool and to extend the understanding of mesoscale evolution in the low-energy region far from the strong Gulf Stream recirculation. The propagation of 224 Hz sound energy in the ocean can be described as a set of rays traveling from source to receiver, with each ray taking a different path through the ocean in a vertical plane connecting the source and receiver. The sources transmitted a phase-coded signal which was processed at the receiver to produce a pulse at the time of arrival of the signal. Rays can be distinguished by their different pulse travel times, and these travel times change in response to variations in sound speed and current in the ocean through which the rays passed. In order to reconstruct the ocean variations from the observed travel time changes, it is necessary to specify models for both the variations and their effect on the travel times. The dependence of travel time on the oceanic sound speed and current fields can be calculated using ray paths traced by computer. The vertical structure of the sound speed and current fields in the ocean were modelled as a combination of Empirical Orthogonal Functions (EOFs) from MODE. The horizontal structure was continuous, but was constrained to have a gaussian covariance with a 100 km. e- folding scale. The resulting estimator closely resembles objective mapping as used in meteorology and physical oceanography. The tomographic system has at present only been used to estimate sound speed structure for comparison with the traditional measurements, especially the first two NOAA CTD surveys, but the method provides means for estimating density, temperature or velocity fields, and these will be produced in the future. The sound speed estimates made using the tomographic system match the traditional measurements to within the associated error bars, and there are several possibilities for improving the signal to noise ratio of the data. Given high-precision data, tomographic systems can resolve ocean structures at small scales, such as in the Gulf Stream, or at large scales, over entire ocean basins. Work is in progress to evaluate the usefulness of tomography as an observation tool in these applications.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April 1983
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Cornuelle, Bruce D., "Inverse methods and results from the 1981 Ocean Acoustic Tomography Experiment", 1983-04, DOI:10.1575/1912/2596, https://hdl.handle.net/1912/2596
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Multipurpose acoustic networks in the integrated Arctic Ocean observing system 

      Mikhalevsky, Peter N.; Sagen, Hanne; Worcester, Peter F.; Baggeroer, Arthur B.; Orcutt, John A.; Moore, Sue E.; Lee, Craig M.; Vigness-Raposa, Kathleen J.; Freitag, Lee E.; Arrott, Matthew; Atakan, Kuvvet; Beszczynska-Möller, Agnieszka; Duda, Timothy F.; Dushaw, Brian D.; Gascard, Jean-Claude; Gavrilov, Alexander N.; Keers, Henk; Morozov, Andrey K.; Munk, Walter H.; Rixen, Michel; Sandven, Stein; Skarsoulis, Emmanuel; Stafford, Kathleen M.; Vernon, Frank L.; Yuen, Mo Yan (Arctic Institute of North America, 2015)
      The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This activity will be driven by increased demand for energy and the marine resources of an Arctic Ocean accessible ...
    • Thumbnail

      Evaluation of electromagnetic source for ocean climate acoustic thermometry at Lake Seneca 

      Slavinsky, Mark; Bogolubov, Boris; Alelekov, Igor; Pigalov, Konstantin; Spiesberger, John L.; Boutin, Paul R. (Woods Hole Oceanographic Institution, 1993-02)
      A compact electromagnetic monopole source, requiring pressure equalization, was evaluated at the Naval Underwater Systems Center at Lake Seneca during July 1992 by scientists from the Institute of Applied Physics of the ...
    • Thumbnail

      A distributed approach to underwater acoustic communications 

      Bohner, Christopher George (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2003-09)
      A novel distributed underwater acoustic networking (UAN) protocol suitable for ad-hoc deployments of both stationary and mobile nodes dispersed across a relatively wide coverage area is presented. Nodes are dynamically ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo