Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres
Date
2020-04-30Author
Chakraborty, Anirban
Concept link
Ruff, S. Emil
Concept link
Dong, Xiyang
Concept link
Ellefson, Emily D.
Concept link
Li, Carmen
Concept link
Brooks, James M.
Concept link
McBee, Jayme
Concept link
Bernard, Bernie B.
Concept link
Hubert, Casey R. J.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/25801As published
https://doi.org/10.1073/pnas.2002289117DOI
10.1073/pnas.2002289117Keyword
deep biosphere; microbiome; dispersalAbstract
Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.
Description
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chakraborty, A., Ruff, S. E., Dong, X., Ellefson, E. D., Li, C., Brooks, J. M., McBee, J., Bernard, B. B., & Hubert, C. R. J. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proceedings of the National Academy of Sciences of the United States of America, 117(20), (2020): 11029-11037, doi: 10.1073/pnas.2002289117.
Collections
Suggested Citation
Chakraborty, A., Ruff, S. E., Dong, X., Ellefson, E. D., Li, C., Brooks, J. M., McBee, J., Bernard, B. B., & Hubert, C. R. J. (2020). Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 11029-11037.The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801
Rouxel, Olivier J.; Ono, Shuhei; Alt, Jeffrey C.; Rumble, Douglas; Ludden, John (2008-01-08)The subsurface biosphere in the basaltic ocean crust is potentially of major importance in affecting chemical exchange between the ocean and lithosphere. Alteration of the oceanic crust commonly yields secondary pyrite ... -
Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii
Edwards, Katrina J.; Glazer, Brian T.; Rouxel, Olivier J.; Bach, Wolfgang; Emerson, David; Toner, Brandy M.; Chan, Clara S.; Tebo, Bradley M.; Staudigel, Hubert; Moyer, Craig L. (Nature Publishing Group, 2011-05-05)A novel hydrothermal field has been discovered at the base of Lōihi Seamount, Hawaii, at 5000 mbsl. Geochemical analyses demonstrate that ‘FeMO Deep’, while only 0.2 °C above ambient seawater temperature, derives from a ... -
Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru
Biddle, Jennifer F.; Lipp, Julius S.; Lever, Mark A.; Lloyd, Karen G.; Sorensen, Ketil B.; Anderson, Rika E.; Fredricks, Helen F.; Elvert, Marcus; Kelly, Timothy J.; Schrag, Daniel P.; Sogin, Mitchell L.; Brenchley, Jean E.; Teske, Andreas; House, Christopher H.; Hinrichs, Kai-Uwe (National Academy of Sciences, 2006-02-27)Studies of deeply buried, sedimentary microbial communities and associated biogeochemical processes during Ocean Drilling Program Leg 201 showed elevated prokaryotic cell numbers in sediment layers where methane is consumed ...