• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Ray-acoustic caustic formation and timing effects from ocean sound-speed relative curvature

    Thumbnail
    View/Open
    JASA_Duda-1994.pdf (1.163Mb)
    Date
    1994-08
    Author
    Duda, Timothy F.  Concept link
    Bowlin, James B.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2570
    As published
    https://doi.org/10.1121/1.410380
    DOI
    10.1121/1.410380
    Keyword
     Pacific Ocean; Ray-tracing; Sound waves; Wave propagation; Pulses; Acoustics; Sound velocity; Depth profiles; Wave front; Fluctuations; Underwater 
    Abstract
    Using deterministic ray-acoustic modeling of 1000-km propagation in the North Pacific, a depth-dependent parameter of ocean sound channels has been found to strongly influence geometrical ray propagation. This parameter is the sound speed times the second vertical derivative of sound speed divided by the square of the first derivative. Ray and wavefront timing and intensity can be influenced within realistic ocean sound channels by unpredictable wavefront triplications and caustics. These triplications are associated with large values of the parameter at ray turning points. The parameter, a relative curvature, behaves as a random variable because of ocean finestructure, causing the unpredictability. The relative curvature has a higher mean value near the sound-speed minimum for both an internal-wave model and actual data, so that this mechanism is a plausible explanation of poor multipath resolution and identifiability late in North Pacific pulse trains.
    Description
    Author Posting. © Acoustical Society of America, 1994. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 96 (1994): 1033-1046, doi:10.1121/1.410380.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Journal of the Acoustical Society of America 96 (1994): 1033-1046
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range 

      Duda, Timothy F.; Lin, Ying-Tsong; Reeder, D. Benjamin (Acoustical Society of America, 2011-09)
      A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional ...
    • Thumbnail

      Low-frequency broadband sound source localization using an adaptive normal mode back-propagation approach in a shallow-water ocean 

      Lin, Ying-Tsong; Newhall, Arthur E.; Lynch, James F. (Acoustical Society of America, 2012-02)
      A variety of localization methods with normal mode theory have been established for localizing low frequency (below a few hundred Hz), broadband signals in a shallow water environment. Gauss-Markov inverse theory is employed ...
    • Thumbnail

      Bottom interacting sound at 50 km range in a deep ocean environment 

      Udovydchenkov, Ilya A.; Stephen, Ralph A.; Duda, Timothy F.; Bolmer, S. Thompson; Worcester, Peter F.; Dzieciuch, Matthew A.; Mercer, James A.; Andrew, Rex K.; Howe, Bruce M. (Acoustical Society of America, 2012-10)
      Data collected during the 2004 Long-range Ocean Acoustic Propagation Experiment provide absolute intensities and travel times of acoustic pulses at ranges varying from 50 to 3200 km. In this paper a subset of these data ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo