Show simple item record

dc.contributor.authorBuesseler, Ken O.  Concept link
dc.contributor.authorBoyd, Philip  Concept link
dc.contributor.authorBlack, Erin E.  Concept link
dc.contributor.authorSiegel, David A.  Concept link
dc.identifier.citationBuesseler, K. O., Boyd, P. W., Black, E. E., & Siegel, D. A. (2020). Metrics that matter for assessing the ocean biological carbon pump. Proceedings of the National Academy of Sciences of the United States of America, 201918114.en_US
dc.description© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Buesseler, K. O., Boyd, P. W., Black, E. E., & Siegel, D. A. Metrics that matter for assessing the ocean biological carbon pump. Proceedings of the National Academy of Sciences of the United States of America, (2020): 201918114, doi: 10.1073/pnas.1918114117.en_US
dc.description.abstractThe biological carbon pump (BCP) comprises wide-ranging processes that set carbon supply, consumption, and storage in the oceans’ interior. It is becoming increasingly evident that small changes in the efficiency of the BCP can significantly alter ocean carbon sequestration and, thus, atmospheric CO2 and climate, as well as the functioning of midwater ecosystems. Earth system models, including those used by the United Nation’s Intergovernmental Panel on Climate Change, most often assess POC (particulate organic carbon) flux into the ocean interior at a fixed reference depth. The extrapolation of these fluxes to other depths, which defines the BCP efficiencies, is often executed using an idealized and empirically based flux-vs.-depth relationship, often referred to as the “Martin curve.” We use a new compilation of POC fluxes in the upper ocean to reveal very different patterns in BCP efficiencies depending upon whether the fluxes are assessed at a fixed reference depth or relative to the depth of the sunlit euphotic zone (Ez). We find that the fixed-depth approach underestimates BCP efficiencies when the Ez is shallow, and vice versa. This adjustment alters regional assessments of BCP efficiencies as well as global carbon budgets and the interpretation of prior BCP studies. With several international studies recently underway to study the ocean BCP, there are new and unique opportunities to improve our understanding of the mechanistic controls on BCP efficiencies. However, we will only be able to compare results between studies if we use a common set of Ez-based metrics.en_US
dc.description.sponsorshipWe thank the many scientists whose ideas and contributions over the years are the foundation of this paper. This includes A. Martin, who led the organization of the BIARRITZ group (now JETZON) workshop in July 2019, discussions at which helped to motivate this article. We thank D. Karl for pointing us in the right direction for this paper format at PNAS and two thoughtful reviewers who through their comments helped to improve this manuscript. Support for writing this piece is acknowledged from several sources, including the Woods Hole Oceanographic Institution’s Ocean Twilight Zone project (K.O.B.); NASA as part of the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) program (K.O.B. and D.A.S.). E.E.B. was supported by a postdoctoral fellowship through the Ocean Frontier Institute at Dalhousie University. P.W.B. was supported by the Australian Research Council through a Laureate (FL160100131).en_US
dc.publisherNational Academy of Sciencesen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.subjectbiological carbon pumpen_US
dc.subjecttwilight zoneen_US
dc.subjectparticle fluxen_US
dc.titleMetrics that matter for assessing the ocean biological carbon pumpen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International