Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom
Date
2020-01-17Author
Bhatnagar, Srijak
Concept link
Cowley, Elise S.
Concept link
Kopf, Sebastian H.
Concept link
Pérez Castro, Sherlynette
Concept link
Kearney, Sean
Concept link
Dawson, Scott C.
Concept link
Hanselmann, Kurt
Concept link
Ruff, S. Emil
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/25525As published
https://doi.org/10.1186/s40793-019-0348-0DOI
10.1186/s40793-019-0348-0Keyword
Microbial succession; Green sulfur bacteria; Prosthecochloris; Syntrophy; Brackish coastal ecosystem; Anoxygenic phototrophy; Microviridae; Sulfur cycling; CRISPR-Cas; ResilienceAbstract
Background: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time.
Results: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp.
Conclusions: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.
Description
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bhatnagar, S., Cowley, E. S., Kopf, S. H., Pérez Castro, S., Kearney, S., Dawson, S. C., Hanselmann, K., & Ruff, S. E. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiome, 15(1),(2020): 3, doi:10.1186/s40793-019-0348-0.
Collections
Suggested Citation
Bhatnagar, S., Cowley, E. S., Kopf, S. H., Pérez Castro, S., Kearney, S., Dawson, S. C., Hanselmann, K., & Ruff, S. E. (2020). Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiome, 15(1), 3.The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801
Rouxel, Olivier J.; Ono, Shuhei; Alt, Jeffrey C.; Rumble, Douglas; Ludden, John (2008-01-08)The subsurface biosphere in the basaltic ocean crust is potentially of major importance in affecting chemical exchange between the ocean and lithosphere. Alteration of the oceanic crust commonly yields secondary pyrite ... -
Sulfur isotopes in rivers : insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle
Burke, Andrea; Present, Theodore M.; Paris, Guillaume; Rae, Emily C. M.; Sandilands, Brodie H.; Gaillardet, Jerome; Peucker-Ehrenbrink, Bernhard; Fischer, Woodward W.; McClelland, James W.; Spencer, Robert G. M.; Voss, Britta M.; Adkins, Jess F. (2018-05)The biogeochemical sulfur cycle is intimately linked to the cycles of carbon, iron, and oxygen, and plays an important role in global climate via weathering reactions and aerosols. However, many aspects of the modern budget ... -
Multiple sulfur isotope constraints on the modern sulfur cycle
Tostevin, Rosalie; Turchyn, Alexandra V.; Farquhar, James; Johnston, David T.; Eldridge, Daniel L.; Bishop, James K. B.; McIlvin, Matthew R. (Elsevier, 2014-04-16)We present 28 multiple sulfur isotope measurements of seawater sulfate (δ34SSO4δ34SSO4 and Δ33SSO4Δ33SSO4) from the modern ocean over a range of water depths and sites along the eastern margin of the Pacific Ocean. The ...