• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Dynamics and thermodynamics of the mean transpolar drift and ice thickness in the Arctic Ocean

    Thumbnail
    View/Open
    Article (1.495Mb)
    Date
    2019-11-15
    Author
    Spall, Michael A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/25397
    As published
    https://doi.org/10.1175/JCLI-D-19-0252.1
    DOI
    10.1175/JCLI-D-19-0252.1
    Keyword
     Arctic; Sea ice; Ocean circulation 
    Abstract
    A theory for the mean ice thickness and the Transpolar Drift in the Arctic Ocean is developed. Asymptotic expansions of the ice momentum and thickness equations are used to derive analytic expressions for the leading-order ice thickness and velocity fields subject to wind stress forcing and heat loss to the atmosphere. The theory is most appropriate for the eastern and central Arctic, but not for the region of the Beaufort Gyre subject to anticyclonic wind stress curl. The scale analysis reveals two distinct regimes: a thin ice regime in the eastern Arctic and a thick ice regime in the western Arctic. In the eastern Arctic, the ice drift is controlled by a balance between wind and ocean drag, while the ice thickness is controlled by heat loss to the atmosphere. In contrast, in the western Arctic, the ice thickness is determined by a balance between wind and internal ice stress, while the drift is indirectly controlled by heat loss to the atmosphere. The southward flow toward Fram Strait is forced by the across-wind gradient in ice thickness. The basic predictions for ice thickness, heat loss, ice volume, and ice export from the theory compare well with an idealized, coupled ocean–ice numerical model over a wide range of parameter space. The theory indicates that increasing atmospheric temperatures or wind speed result in a decrease in maximum ice thickness and ice volume. Increasing temperatures also result in a decrease in heat loss to the atmosphere and ice export through Fram Strait, while increasing winds drive increased heat loss and ice export.
    Description
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(24), (2019): 8449-8463, doi: 10.1175/JCLI-D-19-0252.1.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Spall, M. A. (2019). Dynamics and thermodynamics of the mean transpolar drift and ice thickness in the Arctic Ocean. Journal of Climate, 32(24), 8449-8463.
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Recent advances in Arctic ocean studies employing models from the Arctic Ocean Model Intercomparison Project 

      Proshutinsky, Andrey; Aksenov, Yevgeny; Kinney, Jaclyn Clement; Gerdes, Rudiger; Golubeva, Elena; Holland, David; Holloway, Greg; Jahn, Alexandra; Johnson, Mark; Popova, Ekaterina E.; Steele, Michael; Watanabe, Eiji (Oceanography Society, 2011-09)
      Observational data show that the Arctic Ocean has significantly and rapidly changed over the last few decades, which is unprecedented in the observational record. Air and water temperatures have increased, sea ice volume ...
    • Thumbnail

      A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean 

      Tank, Suzanne E.; Raymond, Peter A.; Striegl, Robert G.; McClelland, James W.; Holmes, Robert M.; Fiske, Gregory J.; Peterson, Bruce J. (American Geophysical Union, 2012-12-14)
      A series of seasonally distributed measurements from the six largest Arctic rivers (the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie) was used to examine the magnitude and significance of Arctic riverine DIC flux to ...
    • Thumbnail

      The Arctic and subarctic Ocean flux of potential vorticity and the Arctic Ocean circulation 

      Yang, Jiayan (American Meteorological Society, 2005-12)
      According to observations, the Arctic Ocean circulation beneath a shallow thermocline can be schematized by cyclonic rim currents along shelves and over ridges. In each deep basin, the circulation is also believed to be ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo