Show simple item record

dc.contributor.authorHeld, Noelle A.  Concept link
dc.date.accessioned2020-02-03T16:19:42Z
dc.date.available2020-02-03T16:19:42Z
dc.date.issued2020-02
dc.identifier.urihttps://hdl.handle.net/1912/25300
dc.descriptionSubmitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography and Microbial Biogeochemistry at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.en_US
dc.description.abstractMarine microbes play key roles in global biogeochemistry by mediating chemical transformations and linking nutrient cycles to one another. A major goal in oceanography is to predict the activity of marine microbes across disparate ocean ecosystems. Towards this end, molecular biomarkers are important tools in chemical oceanography because they allow for both the observation and interpretation of microbial behavior. In this thesis, I use molecular biomarkers to develop a holistic, systems biology approach to the study of marine microbes. I begin by identifying unique patterns in the biochemical sensory systems of marine bacteria and suggest that these represent a specific adaptation to the marine environment. Building from this, I focus on the prevalent marine nitrogen fixer Trichodesmium, whose activity affects global nitrogen, carbon, phosphorus, and trace metal cycles. A metaproteomic survey of Trichodesmium populations identified simultaneous iron and phosphate co-stress throughout the tropical and subtropical oceans, demonstrating that this is caused by the biophysical limits of membrane space and nutrient diffusion. Tackling the problem at a smaller scale, I investigated the metaproteomes of individual Trichodesmium colonies captured from a single field site, and identified significant variability related to iron acquisition from mineral particles. Next, I investigated diel proteomes of cultured Trichodesmium erythraeum sp. IMS101 to highlight its physiological complexity and understand how and why nitrogen fixation occurs in the day, despite the incompatibly of the nitrogenase enzyme with oxygen produced in photosynthesis. This thesis develops a fundamental understanding of how Trichodesmium and other organisms affect, and are affected by, their surroundings. It indicates that a reductionist approach in which environmental drivers are considered independently may not capture the full complexity of microbechemistry interactions. Future work can focus on benchmarking and calibration of the protein biomarkers identified here, as well as continued connection of systems biology frameworks to the study of ocean chemistry.en_US
dc.description.sponsorshipThis work was supported by an MIT Walter A. Rosenblith Presidential Fellowship and a National Science Foundation Graduate Research Program Fellowship under grant number 1122274 [N.Held]. This work was also supported by the WHOI Ocean Ventures fund [N.Held], Gordon and Betty Moore Foundation grant number 3782 [M.Saito], National Science Foundation grant numbers OCE-1657766 [M.Saito], EarthCube-1639714 [M.Saito], OCE-1658030 [M.Saito], and OCE-1260233 [M.Saito], and funding from the UK Natural Environment Research Council (NERC) under grants awarded to C.M. (NE/N001079/1) and M.L. (NE/N001125/1). This thesis was completed during a writing residency at the Turkeyland Cove Foundation.en_US
dc.language.isoen_USen_US
dc.publisherMassachusetts Institute of Technology and Woods Hole Oceanographic Institutionen_US
dc.relation.ispartofseriesWHOI Thesesen_US
dc.titleProtein regulation in Trichodesmium and other marine bacteria: observational and interpretive biomarkers of biogeochemical processesen_US
dc.typeThesisen_US
dc.identifier.doi10.1575/1912/25300


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record