Protein regulation in Trichodesmium and other marine bacteria: observational and interpretive biomarkers of biogeochemical processes
Citable URI
https://hdl.handle.net/1912/25300DOI
10.1575/1912/25300Abstract
Marine microbes play key roles in global biogeochemistry by mediating chemical transformations and linking nutrient cycles to one another. A major goal in oceanography is to predict the activity of marine microbes across disparate ocean ecosystems. Towards this end, molecular biomarkers are important tools in chemical oceanography because they allow for both the observation and interpretation of microbial behavior. In this thesis, I use molecular biomarkers to develop a holistic, systems biology approach to the study of marine microbes. I begin by identifying unique patterns in the biochemical sensory systems of marine bacteria and suggest that these represent a specific adaptation to the marine environment. Building from this, I focus on the prevalent marine nitrogen fixer Trichodesmium, whose activity affects global nitrogen, carbon, phosphorus, and trace metal cycles. A metaproteomic survey of Trichodesmium populations identified simultaneous iron and phosphate co-stress throughout the tropical
and subtropical oceans, demonstrating that this is caused by the biophysical limits of membrane space and nutrient diffusion. Tackling the problem at a smaller scale, I investigated the metaproteomes of individual Trichodesmium colonies captured from a
single field site, and identified significant variability related to iron acquisition from mineral particles. Next, I investigated diel proteomes of cultured Trichodesmium erythraeum sp. IMS101 to highlight its physiological complexity and understand how and
why nitrogen fixation occurs in the day, despite the incompatibly of the nitrogenase enzyme with oxygen produced in photosynthesis. This thesis develops a fundamental understanding of how Trichodesmium and other organisms affect, and are affected by, their surroundings. It indicates that a reductionist approach in which environmental drivers are considered independently may not capture the full complexity of microbechemistry interactions. Future work can focus on benchmarking and calibration of the protein biomarkers identified here, as well as continued connection of systems biology frameworks to the study of ocean chemistry.
Description
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography and Microbial Biogeochemistry at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.
Collections
Suggested Citation
Thesis: Held, Noelle A., "Protein regulation in Trichodesmium and other marine bacteria: observational and interpretive biomarkers of biogeochemical processes", 2020-02, DOI:10.1575/1912/25300, https://hdl.handle.net/1912/25300Related items
Showing items related by title, author, creator and subject.
-
Internal hydraulic jumps with upstream shear
Ogden, Kelly A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02)Internal hydraulic jumps in flows with upstream shear are investigated numerically and theoretically. The role of upstream shear has not previously been thoroughly investigated, although it is important in many oceanographic ... -
Insight into chemical, biological, and physical processes in coastal waters from dissolved oxygen and inert gas tracers
Manning, Cara C. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02)In this thesis, I use coastal measurements of dissolved O2 and inert gases to provide insight into the chemical, biological, and physical processes that impact the oceanic cycles of carbon and dissolved gases. Dissolved ... -
Coral biomineralization, climate proxies and the sensitivity of coral reefs to CO2-driven climate change
DeCarlo, Thomas M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02)Scleractinian corals extract calcium (Ca2+) and carbonate (CO2−3) ions from seawater to construct their calcium carbonate (CaCO3) skeletons. Key to the coral biomineralization process is the active elevation of the CO2−3 ...