Sound scattering by several zooplankton groups. II. Scattering models
Citable URI
https://hdl.handle.net/1912/2515As published
https://doi.org/10.1121/1.421110DOI
10.1121/1.421110Keyword
Backscatter; Acoustic wave scattering; BioacousticsAbstract
Mathematical scattering models are derived and compared with data from zooplankton from several gross anatomical groups—fluidlike, elastic shelled, and gas bearing. The models are based upon the acoustically inferred boundary conditions determined from laboratory backscattering data presented in part I of this series [Stanton et al., J. Acoust. Soc. Am. 103, 225–235 (1998)]. The models use a combination of ray theory, modal-series solution, and distorted wave Born approximation (DWBA). The formulations, which are inherently approximate, are designed to include only the dominant scattering mechanisms as determined from the experiments. The models for the fluidlike animals (euphausiids in this case) ranged from the simplest case involving two rays, which could qualitatively describe the structure of target strength versus frequency for single pings, to the most complex case involving a rough inhomogeneous asymmetrically tapered bent cylinder using the DWBA-based formulation which could predict echo levels over all angles of incidence (including the difficult region of end-on incidence). The model for the elastic shelled body (gastropods in this case) involved development of an analytical model which takes into account irregularities and discontinuities of the shell. The model for gas-bearing animals (siphonophores) is a hybrid model which is composed of the summation of the exact solution to the gas sphere and the approximate DWBA-based formulation for arbitrarily shaped fluidlike bodies. There is also a simplified ray-based model for the siphonophore. The models are applied to data involving single pings, ping-to-ping variability, and echoes averaged over many pings. There is reasonable qualitative agreement between the predictions and single ping data, and reasonable quantitative agreement between the predictions and variability and averages of echo data.
Description
Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 236-253, doi:10.1121/1.421110.
Collections
Suggested Citation
Journal of the Acoustical Society of America 103 (1998): 236-253Related items
Showing items related by title, author, creator and subject.
-
Differences between sound scattering by weakly scattering spheres and finite-length cylinders with applications to sound scattering by zooplankton
Stanton, Timothy K.; Wiebe, Peter H.; Chu, Dezhang (Acoustical Society of America, 1998-01)A modeling study was conducted to determine the conditions under which fluidlike zooplankton of the same volume but different shapes (spherical/cylindrical) have similar or dramatically different scattering properties. ... -
Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms
Stanton, Timothy K.; Chu, Dezhang; Wiebe, Peter H.; Martin, Linda V.; Eastwood, Robert L. (Acoustical Society of America, 1998-01)The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically ... -
A phase-compensated distorted wave Born approximation representation of the bistatic scattering by weakly scattering objects : application to zooplankton
Chu, Dezhang; Ye, Zhen (Acoustical Society of America, 1999-10)The distorted wave Born approximation (DWBA) method has been successfully used in modeling the acoustic backscattering by weakly scattering zooplankton [Stanton et al., J. Acoust. Soc. Am. 94, 3463–3472 (1993), Wiebe et ...