• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms

    Thumbnail
    View/Open
    JASA_Stanton-1998b.pdf (423.1Kb)
    Date
    1998-01
    Author
    Stanton, Timothy K.  Concept link
    Chu, Dezhang  Concept link
    Wiebe, Peter H.  Concept link
    Martin, Linda V.  Concept link
    Eastwood, Robert L.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2514
    As published
    https://doi.org/10.1121/1.421469
    DOI
    10.1121/1.421469
    Keyword
     Bioacoustics; Acoustic wave scattering; Fluctuations 
    Abstract
    The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically as a fluid material, (2) gastropods (Limacina retroversa) whose bodies include a hard elastic shell, and (3) siphonophores (Agalma okeni or elegans and Nanomia cara) whose bodies contain a gas inclusion (pneumatophore). The animals were collected from ocean waters off New England (Slope Water, Georges Bank, and the Gulf of Maine). The scattering properties were measured over parts or all of the frequency range 50 kHz to 1 MHz in a laboratory-style pulse-echo setup in a large tank at sea using live fresh specimens. Individual echoes as well as averages and ping-to-ping fluctuations of repeated echoes were studied. The material type of each group is shown to strongly affect both the overall echo level and pattern of the target strength versus frequency plots. In this first article of a two-part series, the dominant scattering mechanisms of the three animal types are determined principally by examining the structure of both the frequency spectra of individual broadband echoes and the compressed pulse (time series) output. Other information is also used involving the effect on overall levels due to (1) animal orientation and (2) tissue in animals having a gas inclusion (siphonophores). The results of this first paper show that (1) the euphausiids behave as weakly scattering fluid bodies and there are major contributions from at least two parts of the body to the echo (the number of contributions depends upon angle of orientation and shape), (2) the gastropods produce echoes from the front interface and possibly from a slow-traveling circumferential (Lamb) wave, and (3) the gas inclusion of the siphonophore dominates the echoes, but the tissue plays a role in the scattering and is especially important when analyzing echoes from individual animals on a ping-by-ping basis. The results of this paper serve as the basis for the development of acoustic scattering models in the companion paper [Stanton et al., J. Acoust. Soc. Am. 103, 236–253 (1998)].
    Description
    Author Posting. © Acoustical Society of America, 1998. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 103 (1998): 225-235, doi:10.1121/1.421469.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • Biology
    Suggested Citation
    Journal of the Acoustical Society of America 103 (1998): 225-235
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Differences between sound scattering by weakly scattering spheres and finite-length cylinders with applications to sound scattering by zooplankton 

      Stanton, Timothy K.; Wiebe, Peter H.; Chu, Dezhang (Acoustical Society of America, 1998-01)
      A modeling study was conducted to determine the conditions under which fluidlike zooplankton of the same volume but different shapes (spherical/cylindrical) have similar or dramatically different scattering properties. ...
    • Thumbnail

      Broadband and statistical characterization of echoes from random scatterers : application to acoustic scattering by marine organisms 

      Lee, Wu-Jung (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2013-02)
      The interpretation of echoes collected by active remote-sensing systems, such as sonar and radar, is often ambiguous due to the complexities in the scattering processes involving the scatterers, the environment, and the ...
    • Thumbnail

      Sound scattering by several zooplankton groups. II. Scattering models 

      Stanton, Timothy K.; Chu, Dezhang; Wiebe, Peter H. (Acoustical Society of America, 1998-01)
      Mathematical scattering models are derived and compared with data from zooplankton from several gross anatomical groups—fluidlike, elastic shelled, and gas bearing. The models are based upon the acoustically inferred ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo