• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Sound scattering by rough elongated elastic objects. I: Means of scattered field

    Thumbnail
    View/Open
    JASA_Stanton-1992a.pdf (1.986Mb)
    Date
    1992-09
    Author
    Stanton, Timothy K.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2508
    As published
    https://doi.org/10.1121/1.403905
    DOI
    10.1121/1.403905
    Keyword
     Sound waves; Scattering; Cylinders; Series expansion; Scattering amplitudes 
    Abstract
    By use of the recently published deformed cylinder formulation [T. K. Stanton, J. Acoust. Soc. Am. 86, 691–705 (1989)], the scattered field due to rough elongated dense elastic objects is derived. The (one-dimensional) roughness is characterized by axial variations of radius. Explicit expressions are derived describing both the mean and mean square of the stochastic scattered field for the rough straight finite length cylinder (broadside incidence) for both ka≪1 and ka≫1 (k is the acoustic wave number and a is the radius) while only the mean is calculated for the prolate spheroid, uniformly bent finite cylinder, and infinitely long cylinder for ka≫1 (again, all broadside incidence). The modal-series-based solution is used in the ka≪1 case as the modal solution simplifies to the sum of two terms (monopole and dipole-like terms). For ka≫1, a more convenient approximate ``ray'' solution is used in place of the modal series solution. The results show that (1) when ka≪1 the roughness-induced variations of the mean and mean-square scattered fields due to the rough straight finite cylinder depend on the roughness, but are independent of frequency—an effect that has no counterpart in the area of scattering by rough planar interfaces. (2) When ka≫1 the mean specular (geometrically reflected) and Rayleigh surface elastic waves of the scattered field of each object are attenuated due to the roughness and their variations are dependent upon the frequency. In addition, the (roughness-induced) attenuation of the Rayleigh wave depends on the number of times the wave has circumnavigated the object. The mean-square values for the straight finite cylinder are attenuated in a similar manner with the additional dependence upon the correlation distance of the surface.
    Description
    Author Posting. © Acoustical Society of America, 1992. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 92 (1992): 1641-1664, doi:10.1121/1.403905.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Journal of the Acoustical Society of America 92 (1992): 1641-1664
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Differences between sound scattering by weakly scattering spheres and finite-length cylinders with applications to sound scattering by zooplankton 

      Stanton, Timothy K.; Wiebe, Peter H.; Chu, Dezhang (Acoustical Society of America, 1998-01)
      A modeling study was conducted to determine the conditions under which fluidlike zooplankton of the same volume but different shapes (spherical/cylindrical) have similar or dramatically different scattering properties. ...
    • Thumbnail

      Sound scattering by several zooplankton groups. II. Scattering models 

      Stanton, Timothy K.; Chu, Dezhang; Wiebe, Peter H. (Acoustical Society of America, 1998-01)
      Mathematical scattering models are derived and compared with data from zooplankton from several gross anatomical groups—fluidlike, elastic shelled, and gas bearing. The models are based upon the acoustically inferred ...
    • Thumbnail

      Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms 

      Stanton, Timothy K.; Chu, Dezhang; Wiebe, Peter H.; Martin, Linda V.; Eastwood, Robert L. (Acoustical Society of America, 1998-01)
      The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo