• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Three-dimensional boundary fitted parabolic-equation model of underwater sound propagation

    Thumbnail
    View/Open
    Article (3.792Mb)
    Date
    2019-09-30
    Author
    Lin, Ying-Tsong  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/25044
    As published
    https://doi.org/10.1121/1.5126011
    DOI
    10.1121/1.5126011
    Abstract
    A three-dimensional (3-D) parabolic-equation (PE) method utilizing a higher-order split-step Padé algorithm and a boundary fitted grid has been developed to accurately solve 3-D underwater sound propagation problems with non-planar or tilted boundaries. At each PE marching step, the split-step Padé algorithm enables the method of alternating directions to implement the square-root Helmholtz operator by carrying out its one-dimensional (1-D) derivative components alternately, and it also allows a straightforward application of the 1-D non-uniform Galerkin method to discretize the solution mesh. The advantage of the boundary fitted grid to improve PE solution accuracy is most profound in the case of fitting to a pressure release surface as its boundary condition is a scalar and has no direction. This method can also be applied to a sloping interface by rotating the grid to align with the interface. Numerical problems of semi-circular waveguide and tilted wedge were solved using this boundary fitted PE method, and benchmark reference solutions were used to examine and confirm the accuracy of the PE solutions. Future applications include modeling 3-D acoustic scattering from a rough sea surface and 3-D sound propagation in beach environments.
    Description
    Author Posting. © Acoustical Society of America, 2019. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 146(3), (2019): 2058-2067, doi:10.1121/1.5126011.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Lin, Y. (2019). Three-dimensional boundary fitted parabolic-equation model of underwater sound propagation. Journal of the Acoustical Society of America, 146(3), 2058-2067.
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo