• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Baroclinic vortices over a sloping bottom

    Thumbnail
    View/Open
    LaCasce_thesis.pdf (16.06Mb)
    Date
    1996-09
    Author
    LaCasce, Joseph H.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2457
    DOI
    10.1575/1912/2457
    Keyword
     Rossby waves; Eddies; Ocean circulation; Turbulence; Submarine topography 
    Abstract
    Nonlinear quasigeostrophic flows in two layers over a topographic slope are considered. The evolution depends on the size of two parameters which indicate the degree of nonlinearity at depth. The first measures the importance of relative vorticity advection and the second of stretching vorticity. Two types of isolated vortex are used to examine the parameter dependence. An initially barotropic vortex remains barotropic only when the first parameter is large, otherwise topographic waves dominate at depth. An Initially surface-trapped vortex larger than deformation scale is baroclinically unstable when the second is large, but is stabilized by the slope otherwise. Both parameters are also relevant to cascading geostrophic turbulence. If the stretching parameter is large, a "barotropic cascade" occurs at the deformation radius (Rhines, 1977) and the cascade "arrests" when the relative vorticity parameter is order unity. If small, layer coupling is hindered and the cascade is arrested at the deformation scale, with the flow dominated by isotropic surface vortices. In both cases, the distinction between vortices and waves is transparent when viewing potential vorticity. It is more difficult to identify waves and vortices from the streamfunction fields, because the waves are present in both layers.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1996
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: LaCasce, Joseph H., "Baroclinic vortices over a sloping bottom", 1996-09, DOI:10.1575/1912/2457, https://hdl.handle.net/1912/2457
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Interaction of high frequency internal waves and the boundary layer on the continental shelf 

      Sanford, Lawrence P. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1984-08)
      Intermittent, shoreward propagating packets of high frequency first mode internal waves are common on the continental shelf when the water column is stratified and may induce large fluctuations in near bottom velocity. ...
    • Thumbnail

      Variability of currents in Great South Channel and over Georges Bank : observation and modeling 

      Chen, Changsheng (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1992-06)
      This thesis consists of two parts: (I) variability of currents and water properties in late spring in the northern Great South Channel and (II) numerical study of stratified tidal rectification over Georges Bank. In part ...
    • Thumbnail

      When an eddy encounters shelf-slope topography 

      Cherian, Deepak A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2016-09)
      Eddies in the ocean move westwards. Those shed by western boundary currents must then interact with continental shelf-slope topography at the western boundary. The presence of other eddies and mean lows complicates this ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo