Submarine giant pumice: A window into the shallow conduit dynamics of a recent silicic eruption.
Date
2019-06-29Author
Mitchell, Samuel J.
Concept link
Houghton, Bruce
Concept link
Carey, Rebecca
Concept link
Manga, Michael
Concept link
Fauria, Kristen
Concept link
Jones, Meghan R.
Concept link
Soule, S. Adam
Concept link
Conway, Chris E.
Concept link
Wei, Zihan
Concept link
Giachetti, Thomas
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/24487As published
https://doi.org/10.1007/s00445-019-1298-5DOI
10.1007/s00445-019-1298-5Keyword
Giant pumice; Submarine volcanism; Banding; Tube pumice; Bubble deformation; Conduit dynamicsAbstract
Meter-scale vesicular blocks, termed “giant pumice,” are characteristic primary products of many subaqueous silicic eruptions. The size of giant pumices allows us to describe meter-scale variations in textures and geochemistry with implications for shearing processes, ascent dynamics, and thermal histories within submarine conduits prior to eruption. The submarine eruption of Havre volcano, Kermadec Arc, in 2012, produced at least 0.1 km3 of rhyolitic giant pumice from a single 900-m-deep vent, with blocks up to 10 m in size transported to at least 6 km from source. We sampled and analyzed 29 giant pumices from the 2012 Havre eruption. Geochemical analyses of whole rock and matrix glass show no evidence for geochemical heterogeneities in parental magma; any textural variations can be attributed to crystallization of phenocrysts and microlites, and degassing. Extensive growth of microlites occurred near conduit walls where magma was then mingled with ascending microlite-poor, low viscosity rhyolite. Meter- to micron-scale textural analyses of giant pumices identify diversity throughout an individual block and between the exteriors of individual blocks. We identify evidence for post-disruption vesicle growth during pumice ascent in the water column above the submarine vent. A 2D cumulative strain model with a flared, shallow conduit may explain observed vesicularity contrasts (elongate tube vesicles vs spherical vesicles). Low vesicle number densities in these pumices from this high-intensity silicic eruption demonstrate the effect of hydrostatic pressure above a deep submarine vent in suppressing rapid late-stage bubble nucleation and inhibiting explosive fragmentation in the shallow conduit.
Description
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mitchell, S. J., Houghton, B. F., Carey, R. J., Manga, M., Fauria, K. E., Jones, M. R., Soule, S. A., Conway, C. E., Wei, Z., & Giachetti, T. Submarine giant pumice: A window into the shallow conduit dynamics of a recent silicic eruption. Bulletin of Volcanology, 81(7), (2019): 42, doi:10.1007/s00445-019-1298-5.
Collections
Suggested Citation
Mitchell, S. J., Houghton, B. F., Carey, R. J., Manga, M., Fauria, K. E., Jones, M. R., Soule, S. A., Conway, C. E., Wei, Z., & Giachetti, T. (2019). Submarine giant pumice: A window into the shallow conduit dynamics of a recent silicic eruption. Bulletin of Volcanology, 81(7), 42.The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
The giant Mauritanian cold-water coral mound province : oxygen control on coral mound formation
Wienberg, Claudia; Titschack, Jürgen; Freiwald, Andre; Frank, Norbert; Lundälv, Tomas; Taviani, Marco; Beuck, Lydia; Schröder-Ritzrau, Andrea; Krengel, Thomas; Hebbeln, Dierk (Elsevier, 2018-02-20)The largest coherent cold-water coral (CWC) mound province in the Atlantic Ocean exists along the Mauritanian margin, where up to 100 m high mounds extend over a distance of ∼400 km, arranged in two slope-parallel chains ... -
The dynamic role of ridges in a β-plane channel : towards understanding the dynamics of large scale circulation in the Southern Ocean
Wang, Liping (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1993-07)In this thesis, the dynamic role of bottom topography in a β-plane channel is systematically studied in both linear homogeneous and stratified layer models in the presence of either wind stress (Chapters 2, 3, 4, and 6) ... -
Mantle plume-midocean ridge interaction : geophysical observations and mantle dynamics
Ito, Garrett T. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1996-09)We analyze bathymetric and gravity anomalies at five plume-ridge systems to constrain crustal and mantle density structure at these prominent oceanic features. Numerical models are then used to explore the physical ...