• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Identity and dynamics of the microbial community responsible for carbon monoxide oxidation in marine environments

    Thumbnail
    View/Open
    Tolli_thesis.pdf (13.27Mb)
    Date
    2003-09
    Author
    Tolli, John D.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2432
    Location
    Sargasso Sea
    Vineyard Sound, MA
    DOI
    10.1575/1912/2432
    Keyword
     Carbon monoxide; Oxidation; Seawater; Microbial ecology 
    Abstract
    As colored dissolved organic matter in seawater absorbs UV solar radiation, a variety of simple chemical species are produced, including carbon monoxide (CO). The ocean surface water is saturated with respect to CO, and is thus a source of CO to the atmosphere. CO reacts with and removes free-radical compounds, and may itself contribute to the 'greenhouse' gas content of the atmosphere. An important sink for CO in seawater is the biological oxidation of CO to CO2 by marine microorganisms. The objectives of this study are to identify component members of the microbial community responsible for the oxidation of CO in coastal marine environments through a combination of recent microbiological and molecular approaches, and to estimate their contributions to total in situ CO bio-oxidation. We utilize an enrichment method that involves cultivation of bacteria on membrane filters, subsequent incubation with radiolabeled CO, and the use of autoradiography to screen colonies with the desired phenotype. Cell-specific CO-oxidation activity is determined for selected purified strains with a time-series 14CO-oxidation method. Molecular phylogeny based on 16S-rDNA gene sequence information within the context of the large and growing 168 database determines the phylogenetic relatedness and identity of marine CO-oxidizing bacteria that result from our cultivation program. The CO oxidizing organisms isolated in this study with greatest activity are closely related to the Roseobacter and Paracoccus genera of the alpha-proteobacteria, collectively known as the "marine alpha group". Other microorganisms found to oxidize CO at environmentally relevant rates are members of beta- and gamma-proteobacteria, and one in the Cytophaga-Flavobacterium-Bacteroides group. A collective CO-oxidation activity was calculated from physiological measurements of purified isolates and abundance estimates of CO-oxidizing marine alpha group organisms. Relative proportions of CO-oxidizing Roseobacter and Paracoccus cells were resolved microscopically by microautoradiography in combination with DAPI and fluorescent-labeled oligonucleotide probes (Substrate Tracking AutoRadiography - Fluorescent In Situ Hybridization (STAR-FISH)). Marine alpha group organisms were a major component of total cell numbers (45.7%) at the time of sampling (March 2003), and CO-oxidizing members of the marine alpha group contributed up to 40.7% of total CO oxidation occurring in coastal waters.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2003
    Collections
    • Biology
    • WHOI Theses
    Suggested Citation
    Thesis: Tolli, John D., "Identity and dynamics of the microbial community responsible for carbon monoxide oxidation in marine environments", 2003-09, DOI:10.1575/1912/2432, https://hdl.handle.net/1912/2432
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A model of the temporal and spatial distribution of carbon monoxide in the mixed layer 

      Kettle, A. James (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-06)
      A field experiment demonstrated the presence of a diurnal cycle in the concentration of carbon monoxide ([CO]) in the upper ocean at the BATS site. A series of laboratory experiments and numerical simulations were carried ...
    • Thumbnail

      Evidence for significant photochemical production of carbon monoxide by particles in coastal and oligotrophic marine waters 

      Xie, Huixiang; Zafiriou, Oliver C. (American Geophysical Union, 2009-12-09)
      Carbon monoxide (CO) photoproduction from particulate and chromophoric dissolved organic matter (CDOM) was determined in seawater from open-ocean and coastal areas. In confirmatory tests, poisoned or non-poisoned filtered ...
    • Thumbnail

      Unexpected diversity of bacteria capable of carbon monoxide oxidation in a coastal marine environment, and contribution of the Roseobacter-cssociated clade to total CO oxidation 

      Tolli, John D.; Sievert, Stefan M.; Taylor, Craig D. (American Society for Microbiology, 2006-03)
      The species diversity, phylogenetic affiliations, and physiological activity rates of carbon monoxide-oxidizing microorganisms were investigated, using new isolates from surface waters collected from the coast of New England ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo