• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Marine Chemistry and Geochemistry (MC&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Marine Chemistry and Geochemistry (MC&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS

    Thumbnail
    View/Open
    Craddock CHEM_GEOL 2008.pdf (915.7Kb)
    Date
    2008-04
    Author
    Craddock, Paul R.  Concept link
    Rouxel, Olivier J.  Concept link
    Ball, Lary A.  Concept link
    Bach, Wolfgang  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2427
    As published
    https://doi.org/10.1016/j.chemgeo.2008.04.017
    Keyword
     Sulfur; Isotope composition; ICP; Mass spectrometry; Laser ablation 
    Abstract
    We have developed a technique for the accurate and precise determination of 34S/32S isotope ratios (δ34S) in sulfur-bearing minerals using solution and laser ablation multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We have examined and determined rigorous corrections for analytical difficulties such as instrumental mass bias, unresolved isobaric interferences, blanks, and laser ablation- and matrix-induced isotopic fractionation. Use of high resolution sector-field mass spectrometry removes major isobaric interferences from O2+. Standard–sample bracketing is used to correct for the instrumental mass bias of unknown samples. Blanks on sulfur masses arising from memory effects and residual oxygen-tailing are typically minor (< 0.2‰, within analytical error), and are mathematically removed by on-peak zero subtraction and by bracketing of samples with standards determined at the same signal intensity (within 20%). Matrix effects are significant (up to 0.7‰) for matrix compositions relevant to many natural sulfur-bearing minerals. For solution analysis, sulfur isotope compositions are best determined using purified (matrix-clean) sulfur standards and sample solutions using the chemical purification protocol we present. For in situ analysis, where the complex matrix cannot be removed prior to analysis, appropriately matrix-matching standards and samples removes matrix artifacts and yields sulfur isotope ratios consistent with conventional techniques using matrix-clean analytes. Our method enables solid samples to be calibrated against aqueous standards; a consideration that is important when certified, isotopically-homogeneous and appropriately matrix-matched solid standards do not exist. Further, bulk and in situ analyses can be performed interchangeably in a single analytical session because the instrumental setup is identical for both. We validated the robustness of our analytical method through multiple isotope analyses of a range of reference materials and have compared these with isotope ratios determined using independent techniques. Long-term reproducibility of S isotope compositions is typically 0.20‰ and 0.45‰ (2σ) for solution and laser analysis, respectively. Our method affords the opportunity to make accurate and relatively precise S isotope measurement for a wide range of sulfur-bearing materials, and is particularly appropriate for geologic samples with complex matrix and for which high-resolution in situ analysis is critical.
    Description
    Author Posting. © Elsevier B.V. , 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 253 (2008): 102-113, doi:10.1016/j.chemgeo.2008.04.017.
    Collections
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Preprint: Craddock, Paul R., Rouxel, Olivier J., Ball, Lary A., Bach, Wolfgang, "Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS", 2008-04, https://doi.org/10.1016/j.chemgeo.2008.04.017, https://hdl.handle.net/1912/2427
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Sulfur isotopes in rivers : insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle 

      Burke, Andrea; Present, Theodore M.; Paris, Guillaume; Rae, Emily C. M.; Sandilands, Brodie H.; Gaillardet, Jerome; Peucker-Ehrenbrink, Bernhard; Fischer, Woodward W.; McClelland, James W.; Spencer, Robert G. M.; Voss, Britta M.; Adkins, Jess F. (2018-05)
      The biogeochemical sulfur cycle is intimately linked to the cycles of carbon, iron, and oxygen, and plays an important role in global climate via weathering reactions and aerosols. However, many aspects of the modern budget ...
    • Thumbnail

      Multiple sulfur isotope constraints on the modern sulfur cycle 

      Tostevin, Rosalie; Turchyn, Alexandra V.; Farquhar, James; Johnston, David T.; Eldridge, Daniel L.; Bishop, James K. B.; McIlvin, Matthew R. (Elsevier, 2014-04-16)
      We present 28 multiple sulfur isotope measurements of seawater sulfate (δ34SSO4δ34SSO4 and Δ33SSO4Δ33SSO4) from the modern ocean over a range of water depths and sites along the eastern margin of the Pacific Ocean. The ...
    • Thumbnail

      Theoretical estimates of equilibrium sulfur isotope effects in aqueous sulfur systems : highlighting the role of isomers in the sulfite and sulfoxylate systems 

      Eldridge, Daniel L.; Guo, Weifu; Farquhar, James (2016-09)
      We present theoretical calculations for all three isotope ratios of sulfur (33S/32S, 34S/32S, 36S/32S) at the B3LYP/6-31+G(d,p) level of theory for aqueous sulfur compounds modeled in 30–40H2O clusters spanning the range ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo