Lateral line sensitivity in free-swimming toadfish Opsanus tau

View/ Open
Date
2019-01-25Author
Mensinger, Allen F.
Concept link
Van Wert, Jacey C.
Concept link
Rogers, Loranzie S.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/23687As published
https://doi.org/10.1242/jeb.190587DOI
10.1242/jeb.190587Keyword
Efferent; Hair cell; Self-generated movement; ModulationAbstract
A longstanding question in aquatic animal sensory physiology is the impact of self-generated movement on lateral line sensitivity. One hypothesis is that efferent modulation of the sensory hair cells cancels self-generated noise and allows fish to sample their surroundings while swimming. In this study, microwire electrodes were chronically implanted into the anterior lateral line nerve of oyster toadfish and neural activity was monitored during forward movement. Fish were allowed to freely swim or were moved by a tethered sled. In all cases, neural activity increased during movement with no evidence of efferent modulation. The anterior lateral line of moving fish responded to a vibrating sphere or the tail oscillations of a robotic fish, indicating that the lateral line also remains sensitive to outside stimulus during self-generated movement. The results suggest that during normal swim speeds, lateral line neuromasts are not saturated and retain the ability to detect external stimuli without efferent modulation.
Description
Author Posting. © The Company of Biologists, 2019. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 222(2) (2019): jeb190587, doi:10.1242/jeb.190587.