• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    The influence of heat transport on Arctic amplification

    Thumbnail
    View/Open
    Fleming_Thesis (3.490Mb)
    Date
    2019-02
    Author
    Fleming, Laura Elizabeth  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/23672
    DOI
    10.1575/1912/23672
    Keyword
     Global warming; Temperature; Sea ice; Heat--Transmission; Barents Sea; Arctic regions 
    Abstract
    The Arctic surface air temperature has warmed nearly twice as much as the global mean since the mid-20th century. Arctic sea ice has also been declining rapidly in recent decades. There is still discussion about how much of this Arctic amplification is caused by local factors, such as changes in surface albedo, versus remote factors, such as changes in heat transport from the midlatitudes. This thesis focuses mainly on the role of poleward heat transport on Arctic amplification. Most of the previous studies on this topic have defined ocean heat transport as the zonally averaged ocean heat transport at 65∘N or 70∘N, which ignores the physical pathways of heat into the Arctic and may include recirculation of heat in the North Atlantic. In this thesis, we define the ocean heat transport as the heat transport across five sections surrounding the Arctic, to create a closed domain in the Arctic. Previous studies on Arctic amplification have used either a single model run or have compared results from a multi-model ensemble. While the multi-model ensemble approach may potentially average out biases in individual models, the ensemble spread confounds the model differences and the internal climate variability. In this thesis, we investigate the Arctic amplification in the Community Earth System Model version 1 (CESM1) Large Ensemble. The CESM1 Large Ensemble includes 40 members that use the same model and external forcing, but different initializations. This simulates different climate trajectories that can occur in a given atmosphere-ocean-land-cryosphere system. We find that CESM1 Large Ensemble projects a large increase towards the end of the 21st century in ocean heat transport into the Arctic, and that the increase in ocean heat transport is significantly correlated with Arctic amplification. The main contributor to the increase in ocean heat transport is the increase across the Barents Sea Opening. The increase in Barents Sea Opening ocean heat transport is highly correlated with the decrease in sea ice in the Barents-Kara Sea region. We propose that this is because the increase in ocean heat transport melts the ice at the sea ice margin, which results in increased surface heat flux from the ocean and further local feedback through decreased surface albedo and increased cloud coverage. We also find that while the changes in atmosphere heat transport into the Arctic circle at 66.5∘N are on the same order as the changes in ocean heat transport, they are not correlated with Arctic amplification.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2019.
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Fleming, Laura Elizabeth, "The influence of heat transport on Arctic amplification", 2019-02, DOI:10.1575/1912/23672, https://hdl.handle.net/1912/23672
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      An analysis of Atlantic Water in the Arctic Ocean using the Arctic Subpolar Gyre State Estimate and observations 

      Grabon, Jeffrey S. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2020-09)
      The Atlantic Water (AW) Layer in the Arctic Subpolar gyre sTate Estimate (ASTE), a regional, medium-resolution coupled ocean-sea ice state estimate, is analyzed for the first time using bounding isopycnals. A surge of AW, ...
    • Thumbnail

      Arctic Ocean circulation in an idealized numerical model 

      Sugimura, Peter Joseph (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2008-09)
      The mid-to-deep Arctic Ocean is generally characterized by a cyclonic circulation, contained along shelves and ridges. Here we analyze the general Arctic circulation using an idealized numerical model consisting of a ...
    • Thumbnail

      Uranium-series radionuclide records of paleoceanographic and sedimentary changes in the Arctic Ocean 

      Hoffmann, Sharon S. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2009-02)
      The radionuclides 231Pa and 230Th, produced in the water column and removed from the ocean by particle scavenging and burial in sediments, offer a means for paleoceanographers to examine past dynamics of both water column ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo