• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Observations of turbulent fluxes and turbulence dynamics in the ocean surface boundary layer

    Thumbnail
    View/Open
    Gerbi_Thesis.pdf (5.160Mb)
    Date
    2008-06
    Author
    Gerbi, Gregory P.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/2321
    Location
    Martha's Vineyard, MA
    DOI
    10.1575/1912/2321
    Keyword
     Ocean-atmosphere interaction; Oceanic mixing 
    Abstract
    This study presents observations of turbulence dynamics made during the low winds portion of the Coupled Boundary Layers and Air-Sea Transfer experiment (CBLAST-Low). Observations were made of turbulent fluxes, turbulent kinetic energy, and the length scales of flux-carrying and energy-containing eddies in the ocean surface boundary layer. A new technique was developed to separate wave and turbulent motions spectrally, using ideas for turbulence spectra that were developed in the study of the bottom boundary layer of the atmosphere. The observations of turbulent fluxes allowed the closing of heat and momentum budgets across the air-sea interface. The observations also show that flux-carrying eddies are similar in size to those expected in rigid-boundary turbulence, but that energy-containing eddies are smaller than those in rigid-boundary turbulence. This suggests that the relationship between turbulent kinetic energy, depth, and turbulent diffusivity are different in the ocean surface boundary layer than in rigid-boundary turbulence. The observations confirm previous speculation that surface wave breaking provides a surface source of turbulent kinetic energy that is transported to depth where it dissipates. A model that includes the effects of shear production, wave breaking and dissipation is able to reproduce the enhancement of turbulent kinetic energy near the wavy ocean surface. However, because of the different length scale relations in the ocean surface boundary layer, the empirical constants in the energy model are different from the values that are used to model rigid-boundary turbulence. The ocean surface boundary layer is observed to have small but finite temperature gradients that are related to the boundary fluxes of heat and momentum, as assumed by closure models. However, the turbulent diffusivity of heat in the surface boundary layer is larger than predicted by rigid-boundary closure models. Including the combined effects of wave breaking, stress, and buoyancy forcing allows a closure model to predict the turbulent diffusivity for heat in the ocean surface boundary layer.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2008
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Gerbi, Gregory P., "Observations of turbulent fluxes and turbulence dynamics in the ocean surface boundary layer", 2008-06, DOI:10.1575/1912/2321, https://hdl.handle.net/1912/2321
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Finestructure and turbulence in the deep ocean 

      Hendricks, Peter J. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1977-01)
      Millimeter scale fluctuations in refractive index recorded with a freely sinking shadowgraph system are correlated with finestructure profiles of temperature, salinity and density and compared to models of ocean turbulence. ...
    • Thumbnail

      Diapycnal advection by double diffusion and turbulence in the ocean 

      St. Laurent, Louis C. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999-09)
      Observations of diapycnal mixing rates are examined and related to diapycnal advection for both double-diffusive and turbulent regimes. The role of double-diffusive mixing at the site of the North Atlantic Tracer ...
    • Thumbnail

      Radiating instability of nonzonal ocean currents 

      Kamenkovich, Igor V. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1996-09)
      This thesis addresses the question of how a highly energetic eddy field could be generated in the interior of the ocean away from the swift boundary currents. The energy radiation due to the temporal growth of non-trapped ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo