Stable isotopic evidence in support of active microbial methane cycling in low-temperature diffuse flow vents at 9°50’N East Pacific Rise
Citable URI
https://hdl.handle.net/1912/2236As published
https://doi.org/10.1016/j.gca.2008.01.025Keyword
Methane; Carbon dioxide; Diffuse fluid; Hydrothermal vents; Methanogenesis; Methane oxidationAbstract
A unique dataset from paired low- and high-temperature vents at 9°50’N East Pacific Rise
provides insight into the microbiological activity in low-temperature diffuse fluids. The stable
carbon isotopic composition of CH4 and CO2 in 9°50’N hydrothermal fluids indicates microbial
methane production, perhaps coupled with microbial methane consumption. Diffuse fluids are
depleted in 13C by ~10‰ in values of δ13C of CH4, and by ~0.55‰ in values of δ13C of CO2,
relative to the values of the high-temperature source fluid (δ13C of CH4 = -20.1 ± 1.2‰, δ13C of
CO2 = -4.08 ± 0.15‰). Mixing of seawater or thermogenic sources cannot account for the
depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature
vents. The substrate utilization and 13C fractionation associated with the microbiological
processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and
CO2 concentrations and carbon isotopic compositions. A mass-isotope numerical box-model of
these paired vent systems is consistent with the hypothesis that microbial methane cycling is
active at diffuse vents at 9°50’N. The detectable 13C modification of fluid geochemistry by
microbial metabolisms may provide a useful tool for detecting active methanogenesis.
Description
Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 72 (2008): 2005-2023, doi:10.1016/j.gca.2008.01.025.
Collections
Suggested Citation
Preprint: Proskurowski, Giora, Lilley, Marvin D., Olson, Eric J., "Stable isotopic evidence in support of active microbial methane cycling in low-temperature diffuse flow vents at 9°50’N East Pacific Rise", 2008-01, https://doi.org/10.1016/j.gca.2008.01.025, https://hdl.handle.net/1912/2236Related items
Showing items related by title, author, creator and subject.
-
Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate
Waite, William F.; Stern, Laura A.; Kirby, S. H.; Winters, William J.; Mason, D. H. (Blackwell Publishing, 2007-03-11)Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C ... -
Modeling sulfate reduction in methane hydrate-bearing continental margin sediments : does a sulfate-methane transition require anaerobic oxidation of methane?
Malinverno, Alberto; Pohlman, John W. (American Geophysical Union, 2011-07-12)The sulfate-methane transition (SMT), a biogeochemical zone where sulfate and methane are metabolized, is commonly observed at shallow depths (1–30 mbsf) in methane-bearing marine sediments. Two processes consume sulfate ... -
Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath)
Wang, David T.; Welander, Paula V.; Ono, Shuhei (2016-07)Aerobic oxidation of methane plays a major role in reducing the amount of methane emitted to the atmosphere from freshwater and marine settings. We cultured an aerobic methanotroph, Methylococcus capsulatus (Bath) at 30 ...