Envelope structure of Synechococcus sp. WH8113, a nonflagellated swimming cyanobacterium

View/ Open
Date
2001-04-24Author
Samuel, Aravinthan D. T.
Concept link
Petersen, Jennifer D.
Concept link
Reese, Thomas S.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/208As published
https://doi.org/10.1186/1471-2180-1-4DOI
10.1186/1471-2180-1-4Keyword
Synechococcus sp.; Motile mechanismAbstract
Many bacteria swim by rotating helical flagellar filaments. Waterbury et al. discovered an exception, strains of the cyanobacterium Synechococcus that swim without flagella or visible changes in shape. Other species of cyanobacteria glide on surfaces. The hypothesis that Synechococcus might swim using traveling surface waves prompted this investigation.
Results
Using quick-freeze electron microscopy, we have identified a crystalline surface layer that encloses the outer membrane of the motile strain Synechococcus sp. WH8113, the components of which are arranged in a rhomboid lattice. Spicules emerge in profusion from the layer and extend up to 150 nm into the surrounding fluid. These spicules also send extensions inwards to the inner cell membrane where motility is powered by an ion-motive force.
Conclusion
The envelope structure of Synechococcus sp. WH8113 provides new constraints on its motile mechanism. The spicules are well positioned to transduce energy at the cell membrane into mechanical work at the cell surface. One model is that an unidentified motor embedded in the cell membrane utilizes the spicules as oars to generate a traveling wave external to the surface layer in the manner of ciliated eukaryotes.
Description
© 2001 Samuel et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. The definitive version was published in BMC Microbiology 1 (2001): 4, doi:10.1186/1471-2180-1-4.
Suggested Citation
BMC Microbiology 1 (2001): 4The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Iron stress in open-ocean cyanobacteria (Synechococcus, Trichodesmium, and Crocosphaera spp.) : identification of the IdiA protein
Webb, Eric A.; Moffett, James W.; Waterbury, John B. (American Society for Microbiology, 2001-12)Cyanobacteria are prominent constituents of the marine biosphere that account for a significant percentage of oceanic primary productivity. In an effort to resolve how open-ocean cyanobacteria persist in regions where the ... -
Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp.
Kamennaya, Nina A.; Post, Anton F. (2010-10-14)Cyanobacteria of the genera Synechococcus and Prochlorococcus are the most abundant photosynthetic organism on Earth occupying a key position at the base of marine food webs. The cynS gene that encodes cyanase was identified ... -
Interactions of cadmium, zinc, and phosphorus in marine Synechococcus : field uptake, physiological and proteomic studies
Cox, Alysia D. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2011-06)A combination of uptake field studies on natural phytoplankton assemblages and laboratory proteomic and physiological experiments on cyanobacterial isolates were conducted investigating the interactions of cadmium (Cd), ...