Quantitative bedrock geology of Brazil
Citable URI
https://hdl.handle.net/1912/1787As published
https://doi.org/10.1029/2006GC001505DOI
10.1029/2006GC001505Keyword
Geologic map; Brazil; Age; Bedrock; SedimentAbstract
We quantitatively analyze the area-age distribution of sedimentary, igneous, metamorphic, and ultramafic bedrock on the basis of data from the digital geologic map of Brazil, published as a GIS map by the Brazilian Geological Survey. Bedrock units exclusively encompassing sedimentary rocks, igneous rocks, or metamorphic rocks cover 40.4%, 31.5%, and 17.7%, respectively, of the total bedrock area. These numbers have to be considered minimum estimates of the areal abundance of sedimentary, igneous, and metamorphic bedrock because polygons defined by mixed lithologies cover ~8.5–9.5% of the total bedrock area. These mixed units are sedimentary rocks with igneous and/or metamorphic contributions (1.4%), metamorphic rocks with sedimentary contributions (1.2%), metamorphic rocks with igneous contributions (1.5%), igneous rocks with sedimentary and/or metamorphic contributions (4.4%), and ultramafic units with sedimentary, igneous, and/or metamorphic contributions (~1–2%). The average ages of major lithologic units, weighted according to bedrock area, are as follows: sedimentary rocks (average stratigraphic age of 248 ± 5 [1σ] Myr; median stratigraphic age of 87.5 Myr), igneous rocks (1153 ± 13 [1σ] Myr), metamorphic rocks (1678 ± 30 [1σ] Myr), and ultramafic rocks (~1227 ± 25 [1σ] Myr). The average bedrock age of Brazil is 946 ± 7 [1σ] Myr. The range in lithologic composition and age structure of the various bedrock units reflects the complex tectonic makeup of Brazil that ranges from Neogene sedimentary cover in the Amazon Basin to Precambrian cratons (Guyana and Brazilian shields) and Transamazonian greenstone belts. The average spatial resolution of the data is 232 km2 polygon−1 and is sufficient to perform area-age analyses of individual river drainage basins larger than ~5,000 km2.
Description
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q05014, doi:10.1029/2006GC001505.
Collections
Suggested Citation
Geochemistry Geophysics Geosystems 8 (2007): Q05014Related items
Showing items related by title, author, creator and subject.
-
Ridge segmentation, tectonic evolution and rheology of slow-spreading oceanic crust
Escartin Guiral, Javier E. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1996-08)Two-thirds of the Earth's surface is oceanic crust formed by magmatic and tectonic processes along mid-ocean ridges. Slow-spreading ridges, such as the Mid-Atlantic Ridge, are discontinuous and composed of ridge segments. ... -
The geological record of oceanic crustal accretion and tectonism at slow-spreading ridges
Jaroslow, Gary E. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1996-12)The objective of this Thesis was to interpret the structural development of slowspreading ridge segments by: 1) delineating the nature, magnitude, and relative importance of primary tectonic and volcanic processes that ... -
Geology of the passive margin off New England
Austin, James A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1978-12)The results of a detailed geophysical investigation conducted by the Woods Hole Oceanographic Institution in 1975 have been used in conjunction with other available information to reconstruct the geologic history of ...