• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Evolution of the Irminger Current anticyclones in the Labrador Sea from hydrographic data

    Thumbnail
    View/Open
    Rykova_Thesis (9.633Mb)
    Date
    2006-06
    Author
    Rykova, Tatiana A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1777
    Location
    Labrador Sea
    DOI
    10.1575/1912/1777
    Keyword
     Eddies; Hydrography 
    Abstract
    The continuous supply of heat and fresh water from the boundaries to the interior of the Labrador Sea plays an important role for the dynamics of the region and in particular, for the Labrador Sea Water formation. Thus, it is necessary to understand the factors governing the exchange of properties between the boundary and interior. A significant fraction of heat and fresh water, needed to balance the annual heat loss and to contribute to the seasonal freshening of the Labrador Sea, is thought to be provided by coherent long-lived anticyclonic eddies shed by the Irminger Current. The population, some properties, rates and direction of propagation of these anomalies are known but the evolution and the mechanism of their decay are still far from obvious. In this work I investigated their water mass properties and evolution under the strong wintertime forcing using hydrographic data from 1990-2004 and a 1-dimensional mixed layer model. There were 50 eddies found in the hydrographic data record, 48 of which were identified as anticyclones. Vertical structure of the eddies was investigated, leading to the categorization of all the anticyclones into three classes: 12 - with a fresh surface layer and no mixed layer, 18 - without a fresh layer and at least one mixed layer, and 18 with ambiguous vertical structure. Four eddies of the second group appeared to have cores extending to as deep as 1500 m vertically and an isopycnal displacement of 400-600 m. A number of eddies without a fresh water cap contained Labrador Sea Water from the previous year at mid-depths.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2006
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Rykova, Tatiana A., "Evolution of the Irminger Current anticyclones in the Labrador Sea from hydrographic data", 2006-06, DOI:10.1575/1912/1777, https://hdl.handle.net/1912/1777
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Internal hydraulic jumps with upstream shear 

      Ogden, Kelly A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02)
      Internal hydraulic jumps in flows with upstream shear are investigated numerically and theoretically. The role of upstream shear has not previously been thoroughly investigated, although it is important in many oceanographic ...
    • Thumbnail

      Insight into chemical, biological, and physical processes in coastal waters from dissolved oxygen and inert gas tracers 

      Manning, Cara C. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02)
      In this thesis, I use coastal measurements of dissolved O2 and inert gases to provide insight into the chemical, biological, and physical processes that impact the oceanic cycles of carbon and dissolved gases. Dissolved ...
    • Thumbnail

      Coral biomineralization, climate proxies and the sensitivity of coral reefs to CO2-driven climate change 

      DeCarlo, Thomas M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02)
      Scleractinian corals extract calcium (Ca2+) and carbonate (CO2−3) ions from seawater to construct their calcium carbonate (CaCO3) skeletons. Key to the coral biomineralization process is the active elevation of the CO2−3 ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo