• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    The redox and iron-sulfide geochemistry of Salt Pond and the thermodynamic constraints on native magnetotactic bacteria

    Thumbnail
    View/Open
    Canovas_Thesis (31.11Mb)
    Date
    2006-06
    Author
    Canovas, Peter A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1713
    Location
    Salt Pond, Cape Cod MA
    DOI
    10.1575/1912/1713
    Keyword
     Salt-stratified pond; Magnetotactic bacteria; FeS; Magnetite; Greigite 
    Abstract
    Salt pond is a meromictic system with an outlet to the sea allowing denser seawater to occupy the monimolimnion while the mixolimnion has relatively low salinity and is the site of greater mixing and microbial activity. The density contrast between the two layers allows for a unique geochemical environment characterized by steep redox gradients at the interface. This chemocline is a habitat for magnetotactic bacteria (MB), and the spatial and temporal distribution of MB in the system along with geochemical (Fe2+, H2S, pH, O2 (aq), etc.) profiles have been analyzed from 2002 - 2005. It has been previously observed that magnetite-producing cocci occupy the top of the chemocline and greigite-producing MB occur at the base of the chemocline and in the sulfidic hypolimnion. This distribution may be attributed to analyte profiles within the pond; depth profiles show a sudden drop of dissolved oxygen (DO) at the chemocline associated with an increase in dissolved Fe(II) concentrations that peak where both O2 and H2S are low. In the sulfidic hypolimnion, Fe(II) concentrations decrease, suggesting buffering of Fe(II) by sulfide phases. Maximum concentrations of iron (II) and sulfide are ~31 µM and 3 mM, respectively. Stability diagrams of magnetite and greigite within EH/pH space and measured voltammetric data verify fields of incomplete oxidation resulting in the production of elemental sulfur, thiosulfate and polysulfides. Calculations of the Gibbs free energy in the Salt Pond chemocline for potential microbial redox reaction involving iron and sulfur species indicate abundant potential energy available for metabolic growth. Oxidation of ferrous iron to ferrihydrite in the upper region of the chemocline consistently has a yield of over -250 kl/mol O2 (aq), - 12.5 times the proposed 20 kl/mol minimum proposed by Schink (1997) necessary to sustain metabolic growth. This translates into biomass yields of - 0.056 mg dry mass per liter of upper chemocline water. If these numbers are applied to the dominant bacteria of the chemocline (MB that are 3% dry weight iron) then there could be up to - 1.68 p.g of iron per liter of upper chemocline water just in the MB. This iron can be permanently sequestered by MB into the sediments after death because the organelles containing the iron phases are resistant to degradation. Geochemical and microbial processes relating to the cycling of iron heavily impact this system and perhaps others containing a chemocline that divides the water column into oxic and anoxic zones.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2006
    Collections
    • WHOI Theses
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Thesis: Canovas, Peter A., "The redox and iron-sulfide geochemistry of Salt Pond and the thermodynamic constraints on native magnetotactic bacteria", 2006-06, DOI:10.1575/1912/1713, https://hdl.handle.net/1912/1713
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Identification of chemoautotrophic microorganisms from a diffuse flow hydrothermal vent at EPR 9° North using 13C DNA Stable Isotope Probing and Catalyzed Activated Reporter Deposition-Fluorescence in situ Hybridization 

      Richberg, Kevin P. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-09)
      At deep‐sea hydrothermal vents chemolithoautotrophic microbes mediate the transfer of geothermal chemical energy to higher trophic levels. To better understand these underlying processes and the organisms catalyzing them, ...
    • Thumbnail

      Biology and potential biogeochemical impacts of novel predatory flavobacteria 

      Banning, Erin C. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-06)
      Predatory bacteria are ubiquitous in aquatic environments and may be important players in the ecology and biogeochemistry of microbial communities. Three novel strains belonging to two genera of marine flavobacteria, ...
    • Thumbnail

      Diversity of the marine cyanobacterium Trichodesmium : characterization of the Woods Hole culture collection and quantification of field populations 

      Hynes, Annette Michelle (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2009-09)
      Trichodesmium is a colonial, N2-fixing cyanobacterium found in tropical oceans. Species of Trichodesmium are genetically similar but several species exist together in the same waters. In order to coexist, Trichodesmium ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo