• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • USGS Woods Hole Coastal and Marine Science Center
    • Energy and Geohazards
    • View Item
    •   WHOAS Home
    • USGS Woods Hole Coastal and Marine Science Center
    • Energy and Geohazards
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Morphology and stratal geometry of the Antarctic continental shelf : insights from models

    Thumbnail
    View/Open
    Antarctic_Res_Ser_1995a.pdf (7.492Mb)
    Date
    1995
    Author
    ten Brink, Uri S.  Concept link
    Schneider, Christopher  Concept link
    Johnson, Aaron H.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1602
    As published
    https://doi.org/10.1029/AR068p0001
    DOI
    10.1029/AR068p0001
    Abstract
    Reconstruction of past ice-sheet fluctuations from the stratigraphy of glaciated continental shelves requires understanding of the relationships among the stratal geometry, glacial and marine sedimentary processes, and ice dynamics. We investigate the formation of the morphology and the broad stratal geometry of topsets on the Antarctic continental shelf with numerical models. Our models assume that the stratal geometry and morphology are principally the results of time-integrated effects of glacial erosion and sedimentation related to the location of the seaward edge of the grounded ice. The location of the grounding line varies with time almost randomly across the shelf. With these simple assumptions, the models can successfully mimic salient features of the morphology and the stratal geometry. The models suggest that the current shelf has gradually evolved to its present geometry by many glacial advances and retreats of the grounding line to different locations across the shelf. The locations of the grounding line do not appear to be linearly correlated with either fluctuations in the δ180 record (which presumably represents changes in the global ice volume) or with the global sea-level curve, suggesting that either a more complex relationship exists or local effects dominate. The models suggest that erosion of preglacial sediments is confined to the inner shelf, and erosion decreases and deposition increases toward the shelf edge. Some of the deposited glacial sediments must be derived from continental erosion. The sediments probably undergo extensive transport and reworking obliterating much of the evidence for their original depositional environment. The flexural rigidity and the tectonic subsidence of the underlying lithosphere modify the bathyrnetry of the shelf, but probably have little effect on the stratal geometry. Our models provide several guidelines for the interpretation of unconformities, the nature of preserved topset deposits, and the significance of progradation versus aggradation of shelf sediments.
    Description
    This paper is not subject to U.S. copyright. The definitive version was published in Geology and Seismic Stratigraphy of the Antarctic Margin, edited by Peter F. Barker and Alan K. Cooper, :1-24. Washington, DC: American Geophysical Union, 1995. ISBN: 0875908845. doi:10.1029/AR068p0001
    Collections
    • Energy and Geohazards
    Suggested Citation
    Geology and Seismic Stratigraphy of the Antarctic Margin, edited by Peter F. Barker and Alan K. Cooper, :1-24. Washington, DC: American Geophysical Union, 1995
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo