• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Multichannel detection for wideband underwater acoustic CDMA communications

    Thumbnail
    View/Open
    whoiaofnc.pdf (678.2Kb)
    Date
    2006-07
    Author
    Stojanovic, Milica  Concept link
    Freitag, Lee E.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1534
    As published
    https://doi.org/10.1109/joe.2006.880389
    DOI
    10.1109/joe.2006.880389
    Keyword
     Adaptive algorithms; Decision-feedback equalization; Direct-sequence (DS) spread-spectrum; Multichannel combining; Space-time processing; Underwater acoustic communications; Wideband code-division multiple access (CDMA) 
    Abstract
    Direct-sequence (DS) code-division multiple access (CDMA) is considered for future wideband mobile underwater acoustic networks, where a typical configuration may include several autonomous underwater vehicles (AUVs) operating within a few kilometers of a central receiver. Two receivers that utilize multichannel (array) processing of asynchronous multiuser signals are proposed: the symbol decision feedback (SDF) receiver and the chip hypothesis feedback (CHF) receiver. Both receivers use a chip-resolution adaptive front end consisting of a many-to-few combiner and a bank of fractionally-spaced feedforward equalizers. In the SDF receiver, feedback equalization is implemented at symbol resolution, and receiver filters, including a decision-directed phase-locked loop, are adapted at the symbol rate. This limits its applicability to the channels whose time variation is slow compared to the symbol rate. In a wideband acoustic system, which transmits at maximal chip rate, the symbol rate is down-scaled by the spreading factor, and an inverse effect may occur by which increasing the spreading factor results in performance degradation. To eliminate this effect, feedback equalization, which is necessary for the majority of acoustic channels, is performed in the CHF receiver at chip resolution and receiver parameters are adjusted at the chip rate. At the price of increased computational complexity (there are as many adaptive filters as there are symbol values), this receiver provides improved performance for systems where time variation cannot be neglected with respect to the symbol rate [e.g., low probability of detection (LPD) acoustic systems]. Performance of the two receivers was demonstrated in a four-user scenario, using experimental data obtained over a 2-km shallow-water channel. At the chip rate of 19.2 kilochips per second (kc/s) with quaternary phase-shift keying (QPSK) modulation, excellent results were achieved at an aggregate data rate of up to 10 kb/s
    Description
    Author Posting. © IEEE, 2006. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 31 (2006): 685-695, doi:10.1109/joe.2006.880389.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    IEEE Journal of Oceanic Engineering 31 (2006): 685-695
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Surface wave focusing and acoustic communications in the surf zone 

      Preisig, James C.; Deane, Grant B. (Acoustical Society of America, 2004-10)
      The forward scattering of acoustic signals off of shoaling surface gravity waves in the surf zone results in a time-varying channel impulse response that is characterized by intense, rapidly fluctuating arrivals. In some ...
    • Thumbnail

      Estimated communication range and energetic cost of bottlenose dolphin whistles in a tropical habitat 

      Jensen, Frants H.; Beedholm, Kristian; Wahlberg, Magnus; Bejder, Lars; Madsen, Peter T. (Acoustical Society of America, 2012-01)
      Bottlenose dolphins (Tursiops sp.) depend on frequency-modulated whistles for many aspects of their social behavior, including group cohesion and recognition of familiar individuals. Vocalization amplitude and frequency ...
    • Thumbnail

      Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment 

      Preisig, James C. (Acoustical Society of America, 2005-07)
      Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error of each equalizer. This error is decomposed into ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo