Buoyant gravity currents along a sloping bottom in a rotating fluid
Citable URI
https://hdl.handle.net/1912/150As published
https://doi.org/10.1017/S0022112002008868DOI
10.1017/S0022112002008868Abstract
The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q, density anomaly g[prime prime or minute], Coriolis frequency f, and bottom slope [alpha]. The nose propagation speed is cp [similar] cw/ (1 + cw/c[alpha]) and the width of the buoyant gravity current is Wp [similar] cw/ f(1 + cw/c[alpha]), where cw = (2Qg[prime prime or minute] f)1/4 is the nose propagation speed in the vertical wall limit (steep bottom slope) and c[alpha] = [alpha]g/f is the nose propagation speed in the slope-controlled limit (small bottom slope). The key non-dimensional parameter is cw/c[alpha], which indicates whether the bottom slope is steep enough to be considered a vertical wall (cw/c[alpha] [rightward arrow] 0) or approaches the slope-controlled limit (cw/c[alpha] [rightward arrow] [infty infinity]). The scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom slopes (cw/c[alpha] = 0.11–13.1). Additionally, previous laboratory and numerical model results are reanalysed and shown to support the proposed scaling theory.
Description
Author Posting. © Cambridge University Press, 2002. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 464 (2002): 251-278, doi:10.1017/S0022112002008868.
Collections
Suggested Citation
Journal of Fluid Mechanics 464 (2002): 251-278Related items
Showing items related by title, author, creator and subject.
-
An experimental study on mixing induced by gravity currents on a sloping bottom in a rotating fluid
Ohiwa, Mitchihiro (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2002-09)Mixing induced by gravity currents on a sloping bottom was studied through laboratory experiments in a rotating fluid. The dense fluid on the sloping bottom formed a gravity current that could be in regimes where the ... -
Entrainment in a dense current flowing down a rough sloping bottom in a rotating fluid
Ottolenghi, Luisa; Cenedese, Claudia; Adduce, Claudia (American Meteorological Society, 2017-02-20)Dense oceanic overflows descend over the rough topography of the continental slope entraining and mixing with surrounding waters. The associated dilution dictates the fate of these currents and thus is of fundamental ... -
Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE) : local validation and global patterns
Kanzow, Torsten; Flechtner, Frank; Chave, Alan D.; Schmidt, Roland; Schwintzer, Peter; Send, Uwe (American Geophysical Union, 2005-09-02)The Gravity Recovery and Climate Experiment (GRACE) processing centers at the GeoForschungsZentrum Potsdam (GFZ) and the University of Texas Center for Space Research (UTCSR) provide time series of monthly gravity field ...