• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    A double-diffusive interface tank for dynamic-response studies

    Thumbnail
    View/Open
    JMR_63_263.pdf (5.159Mb)
    Date
    2005-01
    Author
    Schmitt, Raymond W.  Concept link
    Millard, Robert C.  Concept link
    Toole, John M.  Concept link
    Wellwood, W. David  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1496
    As published
    https://doi.org/10.1357/0022240053693842
    DOI
    10.1357/0022240053693842
    Abstract
    A large tank capable of long-term maintenance of a sharp temperature-salinity interface has been developed and applied to measurements of the dynamical response of oceanographic sensors. A two-layer salt-stratified system is heated from below and cooled from above to provide two convectively mixed layers with a thin double-diffusive interface separating them. A temperature jump exceeding 10°C can be maintained over 1–2 cm (a vertical temperature gradient of order 103°C/m) for several weeks. A variable speed-lowering system allows testing of the dynamic response of conductivity and temperature sensors in full-size oceanographic instruments. An acoustic echo sounder and shadowgraph system provide nondisruptive monitoring of the interface and layer microstructure. Tests of several sensor systems show how data from the facility is used to determine sensor response times using several fitting techniques and the speed dependence of thermometer time constants is illustrated. The linearity of the conductivity–temperature relationship across the interface is proposed as a figure of merit for design of lag-correction filters to accurately match temperature and conductivity sensors for the computation of salinity. The effects of finite interface thickness, slow sensor sampling rates and the thermal mass of the conductivity cell are treated. Sensor response characterization is especially important for autonomous instruments where data processing and compression must be performed in-situ, but is also helpful in the development of new sensors and in assuring accurate salinity records from traditional wire-lowered and towed systems.
    Description
    Author Posting. © Sears Foundation for Marine Research, 2005. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 63 (2005): 263-289, doi:10.1357/0022240053693842.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Marine Research 63 (2005): 263-289
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo