• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    An experimental study of a mesoscale vortex colliding with topography of varying geometry in a rotating fluid

    Thumbnail
    View/Open
    JMR_62_5.pdf (2.622Mb)
    Date
    2004-09
    Author
    Adduce, Claudia  Concept link
    Cenedese, Claudia  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1490
    As published
    https://doi.org/10.1357/0022240042387583
    DOI
    10.1357/0022240042387583
    Abstract
    The interaction of a self-propagating barotropic cyclonic vortex with an obstacle has been investigated and the conditions for a vortex to bifurcate into two vortices determined. As in a previous study, after a self-propagating cyclonic vortex came into contact with the obstacle, fluid peeled off the outer edge of the vortex and a so-called "streamer" went around the obstacle in a counterclockwise direction. Under certain conditions, this fluid formed a new cyclonic vortex in the wake of the obstacle, causing bifurcation of the original vortex into two vortices. In the present study we performed three sets of idealized laboratory experiments with the aim of investigating the importance on the bifurcation mechanism of the obstacle's horizontal cross sectional geometry, the influence of the height of the obstacle, and the importance of the slope of the obstacle sidewalls. The present results suggest that bifurcation occurs only when the obstacle height is equal or larger than 85% of the vortex height and that steep sloping sidewalls do not influence the bifurcation mechanism. In addition, experiments performed using an obstacle with an elliptical horizontal cross section revealed that the relevant parameter governing the occurrence of bifurcation is the length which the "streamer" has to travel around the obstacle, and not the dimension of the obstacle in the direction orthogonal to the motion of the vortex. Collisions of oceanic mesoscale vortices with seamounts often result in major modifications of their structure, having significant impacts on the redistribution of water properties. Observations of a "Meddy" bifurcating after colliding with the Irving Seamount in the Canary Basin show behavior similar to these idealized laboratory experiments. This suggests that these results could be used to explain and predict the outcome of a vortex colliding with seamounts of varying geometry in the ocean.
    Description
    Author Posting. © Sears Foundation for Marine Research, 2004. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 62 (2004): 611-638, doi:10.1357/0022240042387583.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Marine Research 62 (2004): 611-638
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Mixing in a density-driven current flowing down a slope in a rotating fluid 

      Cenedese, Claudia; Adduce, Claudia (Cambridge University Press, 2008-05-14)
      We discuss laboratory experiments investigating mixing in a density-driven current flowing down a sloping bottom, in a rotating homogenous fluid. A systematic study spanning a wide range of Froude, 0.8 < Fr < 10, and ...
    • Thumbnail

      Laboratory experiments on mesoscale vortices interacting with two islands 

      Cenedese, Claudia; Adduce, Claudia; Fratantoni, David M. (American Geophysical Union, 2005-09-30)
      The present study investigates the interaction between a self-propagating cyclonic vortex with two right vertical cylinders and determines the conditions for a vortex to bifurcate into two or more vortices. As in previous ...
    • Thumbnail

      Entrainment in a dense current flowing down a rough sloping bottom in a rotating fluid 

      Ottolenghi, Luisa; Cenedese, Claudia; Adduce, Claudia (American Meteorological Society, 2017-02-20)
      Dense oceanic overflows descend over the rough topography of the continental slope entraining and mixing with surrounding waters. The associated dilution dictates the fate of these currents and thus is of fundamental ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo