Initial results from a cartesian three-dimensional parabolic equation acoustical propagation code
Citable URI
https://hdl.handle.net/1912/1428DOI
10.1575/1912/1428Keyword
Acoustics; Numerical simulation; Fourier split stepAbstract
A three-dimensional (3D) parabolic equation acoustical propagation code has been developed and run successfully. The code is written in the MATLAB language and runs in the MATLAB environment. The code has been implemented in two versions, applied to
(1) Horizontal low-frequency (100 to 500 Hz) propagation through the shallow water waveguide environment; (2) Vertical high-frequency propagation (6 to 15 kHz) to study normal-incidence reflection from the lower side of the ocean surface.
The first edition of the code reported on here does not implement refinements that are often found in 2D propagation models, such as allowing density to vary, optimally smoothing soundspeed discontinuities at the water/seabed interface, and allowing an omni-directional source. The
code is part of a development effort to test the applicability of 2D (and N by 2D) models, which have more refinements than this model, to the study of fully 3D propagation problems, such as sound transiting steep nonlinear coastal-area internal waves and/or sloping terrain, and to provide
a numerical tool when the full 3D solution is needed.
Suggested Citation
Duda, T. F. (2006). Initial results from a cartesian three-dimensional parabolic equation acoustical propagation code. Woods Hole Oceanographic Institution. https://doi.org/10.1575/1912/1428Related items
Showing items related by title, author, creator and subject.
-
Deep seafloor arrivals in long range ocean acoustic propagation
Stephen, Ralph A.; Bolmer, S. Thompson; Udovydchenkov, Ilya A.; Worcester, Peter F.; Dzieciuch, Matthew A.; Andrew, Rex K.; Mercer, James A.; Colosi, John A.; Howe, Bruce M. (Acoustical Society of America, 2013-10)Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean ... -
Sonar-induced pressure fields in a post-mortem common dolphin
Foote, Kenneth G.; Hastings, Mardi C.; Ketten, Darlene R.; Lin, Ying-Tsong; Reidenberg, Joy S.; Rye, Kent (Acoustical Society of America, 2012-02)Potential physical effects of sonar transmissions on marine mammals were investigated by measuring pressure fields induced in a 119-kg, 211-cm-long, young adult male common dolphin (Delphinus delphis) cadaver. The specimen ... -
Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range
Duda, Timothy F.; Lin, Ying-Tsong; Reeder, D. Benjamin (Acoustical Society of America, 2011-09)A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional ...