• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Submarine Fernandina : magmatism at the leading edge of the Galapagos hot spot

    Thumbnail
    View/Open
    2006GC001290.pdf (2.687Mb)
    Date
    2006-12-19
    Author
    Geist, Dennis J.  Concept link
    Fornari, Daniel J.  Concept link
    Kurz, Mark D.  Concept link
    Harpp, Karen S.  Concept link
    Soule, Samuel A.  Concept link
    Perfit, Michael R.  Concept link
    Koleszar, Alison M.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1421
    As published
    https://doi.org/10.1029/2006GC001290
    DOI
    10.1029/2006GC001290
    Keyword
     Rift zone; Magmatic; Evolution; Galapagos 
    Abstract
    New multibeam and side-scan sonar surveys of Fernandina volcano and the geochemistry of lavas provide clues to the structural and magmatic development of Galápagos volcanoes. Submarine Fernandina has three well-developed rift zones, whereas the subaerial edifice has circumferential fissures associated with a large summit caldera and diffuse radial fissures on the lower slopes. Rift zone development is controlled by changes in deviatoric stresses with increasing distance from the caldera. Large lava flows are present on the gently sloping and deep seafloor west of Fernandina. Fernandina's submarine lavas are petrographically more diverse than the subaerial suite and include picrites. Most submarine glasses are similar in composition to aphyric subaerially erupted lavas, however. These rocks are termed the “normal” series and are believed to result from cooling and crystallization in the subcaldera magma system, which buffers the magmas both thermally and chemically. These normal-series magmas are extruded laterally through the flanks of the volcano, where they scavenge and disaggregate olivine-gabbro mush to produce picritic lavas. A suite of lavas recovered from the terminus of the SW submarine rift and terraces to the south comprises evolved basalts and icelandites with MgO = 3.1 to 5.0 wt.%. This “evolved series” is believed to form by fractional crystallization at 3 to 5 kb, involving extensive crystallization of clinopyroxene and titanomagnetite in addition to plagioclase. “High-K” lavas were recovered from the southwest rift and are attributed to hybridization between normal-series basalt and evolved-series magma. The geochemical and structural findings are used to develop an evolutionary model for the construction of the Galápagos Platform and better understand the petrogenesis of the erupted lavas. The earliest stage is represented by the deep-water lava flows, which over time construct a broad submarine platform. The deep-water lavas originate from the subcaldera plumbing system of the adjacent volcano. After construction of the platform, eruptions focus to a point source, building an island with rift zones extending away from the adjacent, buttressing volcanoes. Most rift zone magmas intrude laterally from the subcaldera magma chamber, although a few evolve by crystallization in the upper mantle and deep crust.
    Description
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q12007, doi:10.1029/2006GC001290.
    Collections
    • Geology and Geophysics (G&G)
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Geochemistry Geophysics Geosystems 7 (2006): Q12007
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Limited and localized magmatism in the Central Atlantic Magmatic Province 

      Marzen, Rachel E.; Shillington, Donna J.; Lizarralde, Daniel; Knapp, James H.; Heffner, David M.; Davis, Joshua K.; Harder, Steven H. (Nature Research, 2020-07-07)
      The Central Atlantic Magmatic Province (CAMP) is the most aerially extensive magmatic event in Earth’s history, but many questions remain about its origin, volume, and distribution. Despite many observations of CAMP magmatism ...
    • Thumbnail

      Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity 

      Wannamaker, Philip E.; Evans, Rob L.; Bedrosian, Paul A.; Unsworth, Martyn J.; Maris, Virginie; McGary, R Shane (John Wiley & Sons, 2014-11-11)
      Five magnetotelluric (MT) profiles have been acquired across the Cascadia subduction system and transformed using 2-D and 3-D nonlinear inversion to yield electrical resistivity cross sections to depths of ∼200 km. Distinct ...
    • Thumbnail

      Magmatic plumbing at Lucky Strike volcano based on olivine-hosted melt inclusion compositions 

      Wanless, V. Dorsey; Shaw, Alison M.; Behn, Mark D.; Soule, Samuel A.; Escartin, Javier E.; Hamelin, Cedric (John Wiley & Sons, 2015-01-20)
      Here we present volatile, major, and trace element concentrations of 64 olivine-hosted melt inclusions from the Lucky Strike segment on the mid-Atlantic ridge. Lucky Strike is one of two locations where a crustal melt lens ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo