• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Bathymetry from space : rationale and requirements for a new, high-resolution altimetric mission

    Thumbnail
    View/Open
    CRAS_WK2002_final.pdf (1013.Kb)
    Date
    2006-04-26
    Author
    Sandwell, David T.  Concept link
    Smith, Walter H. F.  Concept link
    Gille, Sarah T.  Concept link
    Kappel, Ellen  Concept link
    Jayne, Steven R.  Concept link
    Soofi, Khalid  Concept link
    Coakley, Bernard  Concept link
    Geli, Louis  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1413
    As published
    https://doi.org/10.1016/j.crte.2006.05.014
    Abstract
    Bathymetry is foundational data, providing basic infrastructure for scientific, economic, educational, managerial, and political work. Applications as diverse as tsunami hazard assessment, communications cable and pipeline route planning, resource exploration, habitat management, and territorial claims under the Law of the Sea all require reliable bathymetric maps to be available on demand. Fundamental Earth science questions, such as what controls seafloor shape and how seafloor shape influences global climate, also cannot be answered without bathymetric maps having globally uniform detail. Current bathymetric charts are inadequate for many of these applications because only a small fraction of the seafloor has been surveyed. Modern multibeam echosounders provide the best resolution, but it would take more than 200 ship-years and billions of dollars to complete the job. The seafloor topography can be charted globally, in five years, and at a cost under $100M. A radar altimeter mounted on an orbiting spacecraft can measure slight variations in ocean surface height, which reflect variations in the pull of gravity caused by seafloor topography. A new satellite altimeter mission, optimized to map the deep ocean bathymetry and gravity field, will provide a global map of the world's deep oceans at a resolution of 6-9 km. This resolution threshold is critical for a large number of basic science and practical applications, including: • Determining the effects of bathymetry and seafloor roughness on ocean circulation, mixing, climate, and biological communities, habitats, and mobility. • Understanding the geologic processes responsible for ocean floor features unexplained by simple plate tectonics, such as abyssal hills, seamounts, microplates, and propagating rifts. • Improving tsunami hazard forecast accuracy by mapping the deep ocean topography that steers tsunami wave energy. • Mapping the marine gravity field to improve inertial navigation and provide homogeneous coverage of continental margins. • Providing bathymetric maps for numerous other practical applications, including reconnaissance for submarine cable and pipeline routes, improving tide models, and assessing potential territorial claims to the seabed under the United Nations Convention on the Law of the Sea.
    Description
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comptes Rendus Geosciences 338 (2006): 1049-1062, doi:10.1016/j.crte.2006.05.014.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Preprint: Sandwell, David T., Smith, Walter H. F., Gille, Sarah T., Kappel, Ellen, Jayne, Steven R., Soofi, Khalid, Coakley, Bernard, Geli, Louis, "Bathymetry from space : rationale and requirements for a new, high-resolution altimetric mission", 2006-04-26, https://doi.org/10.1016/j.crte.2006.05.014, https://hdl.handle.net/1912/1413
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy