• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    The marine geochemistry of trace metals

    Thumbnail
    View/Open
    Boyle_Thesis (3.533Mb)
    Date
    1976-04
    Author
    Boyle, Edward A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1294
    Location
    Antarctic circumpolar current
    mid-Pacific Ocean
    Bering Sea
    DOI
    10.1575/1912/1294
    Keyword
     Geochemistry; Chemical oceanography; Trace elements in water; Chain (Ship : 1958-) Cruise CH115 
    Abstract
    The marine geochemical cycles of iron, copper, nickel, and cadmium were studied in order to provide a basis for oceanographic models for trace metals. Copper, nickel, and cadmium can be determined in a 100 ml seawater sample using cobalt pyrrolidine dithioacarbamate chelate coprecipitation and graphite atomizer atomic absorption spectrometry. Concentration ranges likely to be encountered and estimated (1δ) analytical precisions are copper, 1 to 6 nanomole/kg (±0.1); nickel, 3 to 12 nanomole/kg (±0.3); and cadmium, 0. 0 to 1.1 nanomole/kg (±0.1). The technique may be applied to freshwater samples with slight modification. A survey of several east coast U. S. estuaries established that an iron removal process occurs commonly when rivers mix with seawater. Laboratory mixing experiments using water from the Merrimack River (Mass.) and the Mullica River (New Jersey) demonstrated that rapid iron precipitation occurs as negatively-charged iron-organic colloids react with seawater cations and coagulate. This phenomenom was modeled using a synthetic, organic-stabilized colloidal suspension of goethite. The generality of the mechanism suggests that the world-average net river input of iron to the oceans is less than 1 μmole/kg of river water, an order of magnitude below previous estimates. Profiles of cadmium were obtained for 3 GEOSECS stations in the Pacific Ocean. Cadmium shows a consistent linear correlation with phosphate which demonstrates that cadmium is regenerated in a shallow cycle within the water column. The water column correlation is consistent with data on cadmium in marine organisms. Cadmium is enriched in upwelling regions which explains reports of cadmium enrichment in plankton from the Baja California upwelling region. Copper and nickel measurements have been made for three profiles from the Pacific Ocean. Observed copper concentrations range from 1 to 6 nanomole/kg; nickel varies from 3 to 12 nanomole/kg. Copper and nickel are removed from surface waters by uptake into organisms. As noted previously, nickel is regenerated partially in a shallow cycle (like P) and also in a deep cycle (like Ba). Copper is regenerated from biological debris at the bottom but is also scavenged from the mid and deep water column by an undetermined mechanism. The scavenging residence time is 1400 years. An estimate for the continental input of Ni, 7 nanomole/kg of river water, and Cu, 18 nanomole/kg of river water, was derived from measurements in the Amazon estuary. The oceanic residence times for nickel and copper are about 10,000 years. Evidence available on the uptake laws for trace metals by plankton suggests that a consistent relationship between the uptake law and the depth of regeneration may apply.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April, 1976
    Collections
    • WHOI Theses
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Thesis: Boyle, Edward A., "The marine geochemistry of trace metals", 1976-04, DOI:10.1575/1912/1294, https://hdl.handle.net/1912/1294
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Trace element geochemistry of oceanic peridotites and silicate melt inclusions : implications for mantle melting and ocean ridge magmagenesis 

      Johnson, Kevin T. M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1990-06-15)
      The mantle melting process is fundamental to basalt genesis and crustal accretion at mid-ocean ridges. It is believed that melts ascend more rapidly than the surrounding mantle, implying a process similar to fractional ...
    • Thumbnail

      Trace element geochemistry of marine biogenic particulate matter 

      Collier, Robert William (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1980-11)
      Plankton samples have been carefully collected from a variety of marine environments under the rigorous conditions necessary to prevent contamination for major and trace-chemical analysis. Immediately after collection, ...
    • Thumbnail

      The isotope geochemistry of abyssal peridotites and related rocks 

      Snow, Jonathan E. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1993-06)
      This dissertation studies several aspects of the formation of the Earth's oceanic mantle and crust, using a variety of geologic techniques, principally major elements, radiogenic isotopes and trace elements, but including ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo