• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Production and analysis of a Southern Ocean state estimate

    Thumbnail
    View/Open
    msthesis_mazloff.pdf (4.768Mb)
    Date
    2006-09
    Author
    Mazloff, Matthew R.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1282
    Location
    Southern Ocean
    DOI
    10.1575/1912/1282
    Keyword
    Ocean circulation
    Abstract
    A modern general circulation model of the Southern Ocean with one-sixth of a degree resolution is optimized to the observed ocean in a weighted least squares sense. Convergence toward the state estimate solution is carried out by systematically adjusting the control variables (prescribed atmospheric state, initial conditions, and open northern boundary at 24.7°S) using the adjoint method. A cost function compares the model state to data from CTD synoptic sections, hydrographic climatology, satellite altimetry, and XBTs. Costs attributed to control variable perturbations ensure a physically realistic solution. An optimized solution is determined by the weights placed on the cost function terms. The state estimation procedure, along with the weights used, is described. A significant result is that the adjoint method is shown to work at eddy-permitting resolution in the highly-energetic Southern Ocean. At the time of the writing of this thesis the state estimate was not fully consistent with the observations. An analysis of the remaining misfit, as well as the mass transport in the preliminary state, is presented.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Master of Science in Physical Oceanography, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2006
    Collections
    • WHOI Theses
    • Physical Oceanography (PO)
    Suggested Citation
    Thesis: Mazloff, Matthew R., "Production and analysis of a Southern Ocean state estimate", 2006-09, DOI:10.1575/1912/1282, https://hdl.handle.net/1912/1282
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Understanding the ocean carbon and sulfur cycles in the context of a variable ocean : a study of anthropogenic carbon storage and dimethylsulfide production in the Atlantic Ocean 

      Levine, Naomi M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-02)
      Anthropogenic activity is rapidly changing the global climate through the emission of carbon dioxide. Ocean carbon and sulfur cycles have the potential to impact global climate directly and through feedback loops. Numerical ...
    • Thumbnail

      Near-inertial and thermal upper ocean response to atmospheric forcing in the North Atlantic Ocean 

      Silverthorne, Katherine E. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-06)
      Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of ...
    • Thumbnail

      A study of ocean wave statistical properties using nonlinear, directional, phase-resolved ocean wave-field simulations 

      Henry, Legena Albertha (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-02)
      In the present work, we study the statistics of wavefields obtained from non-linear phase-resolved simulations. The numerical model used to generate the waves models wave-wave interactions based on the fully non-linear ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo