Show simple item record

dc.contributor.authorDorman, Craig E.
dc.date.accessioned2006-10-16T18:51:22Z
dc.date.available2006-10-16T18:51:22Z
dc.date.issued1971-10
dc.identifier.urihttp://hdl.handle.net/1912/1267
dc.descriptionSubmitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October, 1971en
dc.description.abstractThe objective of this study was to describe the mechanics of wind wave generation and spectral development. Intermittency, high frequency microstructure in wind and wave fields, and strong nonlinear coupling involving a wide range of scales are shown to be crucial elements in the transfer of momentum to, from, and within the wave field. None of these elements are included in available theories. Measurements of wave height and of the turbulent atmospheric and subsurface boundary layers were made, from a small surface following platform and from a stable 38.5m spar buoy. The structure of moving gust patterns (cat's paws) is described and related to the generation of surface waves. Results from this and other background studies are then applied to a discussion of spectral growth during a two day period of active wave generation. Cat's paws contain 'bursts' of intense turbulent stress and buoyancy fluctuations separated by quiescent 'intervals'. There is a difference of over three orders of magnitude in fluctuation strength between these features. Rapid growth rate generation of high frequency surface waves and atmospheric turbulence occurs during the bursts. The resultant microscale components aid the growth of lower frequency instabilities by strong nonlinear coupling between scales of motion and by acting as drag or roughness elements. Evidence of strong coupling between frequency bands and of weakly resonant capillary-gravity wave interactions is presented. Thermal stratification has a strong influence on fluctuation magnitude and can delay the onset of surface wave generation. Major spectral growth is highly unsteady. Much of the momentum flux from air to sea occurs during intermittent events that are similar in nature to cat's paws, and goes directly into high frequency waves. The bursts occur predominantly over large groups of surface waves and involve strong nonlinear interactions between media and frequency bands. The long-term equilibrium balance between wind and water is disrupted by variations in surface currents. There are 'critical' wind speeds characterized by anomalous relationships between parameters of the predominantly logarithmic velocity profile.en
dc.format.extent8039036 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen
dc.publisherMassachusetts Institute of Technology and Woods Hole Oceanographic Institutionen
dc.relation.ispartofseriesWHOI Thesesen
dc.subjectOcean-atmosphere interactionen
dc.subjectOcean wavesen
dc.subjectWindsen
dc.subjectBoundary layeren
dc.titleThe relationship between microscales and wind-wave spectral developmenten
dc.typeThesisen
dc.identifier.doi10.1575/1912/1267


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record