• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Paleointensity applications to timing and extent of eruptive activity, 9°–10°N East Pacific Rise

    Thumbnail
    View/Open
    2005GC001141.pdf (5.837Mb)
    Date
    2006-06-08
    Author
    Bowles, Julie A.  Concept link
    Gee, Jeffrey S.  Concept link
    Kent, Dennis V.  Concept link
    Perfit, Michael R.  Concept link
    Soule, Samuel A.  Concept link
    Fornari, Daniel J.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1100
    As published
    https://doi.org/10.1029/2005GC001141
    DOI
    10.1029/2005GC001141
    Abstract
    Placing accurate age constraints on near-axis lava flows has become increasingly important given the structural and volcanic complexity of the neovolcanic zone at fast spreading ridges. Geomagnetic paleointensity of submarine basaltic glass (SBG) holds promise for placing quantitative age constraints on near-axis flows. In one of the first extensive tests of paleointensity as a dating tool or temporal marker we present the results of over 550 successful SBG paleointensity estimates from 189 near-axis (<4 km) sites at the East Pacific Rise, 9°–10°N. Paleointensities range from 6 to 53 μT and spatially correspond to the pattern expected from known temporal variations in the geomagnetic field. Samples within and adjacent to the axial summit trough (AST) have values approximately equal to or slightly higher than the present-day. Samples out to 1–3 km from the AST have values higher than the present-day, and samples farther off axis have values lower than the present-day. The on-axis samples (<500 m from the AST) provide a test case for using models of paleofield variation for the past few hundred years as an absolute dating technique. Results from samples collected near a well-documented eruption in 1991–1992 suggest there may be a small negative bias in the paleointensity estimates, limiting resolution of the dating technique. Possible explanations for such a bias include local field anomalies produced by preexisting magnetic terrain; anomalously high magnetic unblocking temperatures, leading to a small cooling rate bias; and/or the possibility of a chemical remanence produced by in situ alteration of samples likely to have complicated thermal histories. Paleointensity remains useful in approximating age differences in young flows, and a clear along-axis paleointensity contrast near 9°50′N is suggestive of a ∼150–200 year age difference. Paleointensity values of off-axis samples are generally consistent with rough age interpretations based on side scan data. Furthermore, spatial patterns in the paleointensity suggest extensive off-axis flow emplacement may occur infrequently, with recurrence intervals of 10–20 kyr. Results of a stochastic model of lava emplacement show that this can be achieved with a single distribution of flows, with flow size linked to time between eruptions.
    Description
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q06006, doi:10.1029/2005GC001141.
    Collections
    • Geology and Geophysics (G&G)
    Suggested Citation
    Geochemistry Geophysics Geosystems 7 (2006): Q06006
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo