Crustal magmatic system beneath the east pacific rise (8 degrees 20 to 10 degrees 10N): Implications for tectonomagmatic segmentation and crustal melt transport at fast-spreading ridges

Date
2018-11-06Author
Marjanovic, Milena
Concept link
Carbotte, Suzanne M.
Concept link
Carton, Helene
Concept link
Nedimovic, Mladen R.
Concept link
Canales, J. Pablo
Concept link
Mutter, John C.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/10819As published
https://doi.org/10.1029/2018GC007590DOI
10.1029/2018GC007590Keyword
mid‐ocean ridges; multichannel seismic data; tectonomagmatic segmentation; melt transport; East Pacific RiseAbstract
Detailed images of the midcrustal magmatic system beneath the East Pacific Rise (8°20′–10°10′N) are obtained from 2‐D and 3‐D‐swath processing of along axis seismic data and are used to characterize properties of the axial crust, cross‐axis variations, and relationships with structural segmentation of the axial zone. Axial magma lens (AML) reflections are imaged beneath much of the ridge axis (mean depth 1,640 ± 185 m), as are deeper sub‐AML (SAML) reflections (brightest events ~100–800 m below AML). Local shallow regions in the AML underlie two regions of shallow seafloor depth from 9°40′–55′N and 8°26′–33′N. Enhanced magma replenishment at present beneath both sites is inferred and may be linked to nearby off‐axis volcanic chains. SAML reflections, which are observed primarily from 9°20′ to 10°05′N, indicate a finely segmented magma reservoir similar to the AML above, composed of subhorizontal, 2‐ to 7 km‐long AML segments, often with stepwise changes in reflector depth from one segment to the next. We infer that these melt bodies are related to short‐lived melt instability zones. In many locations including where seismic constraints are strongest the intermediate scale (~15–40 km) structural segmentation of the ridge axis identified in this region coincides with (1) changes in average thickness of layer 2A (by 10%–15%), (2) changes in average depth of AML (<100 m), and (3) with the spacing of punctuated low velocity zones mapped in the uppermost mantle. The ~6 km dominant length of multiple AML segments within each of the larger structural segments may reflect the spacing of local sites of ascending magma from discrete melt reservoirs pooled beneath the crust.
Description
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Crustal magmatic system beneath the East Pacific Rise (8°200 to 10°100N): Implications for tectonomagmatic segmentation and crustal melt transport at fast-spreading ridges. Geochemistry, Geophysics, Geosystems, 19, (2018): 4584–4611, doi: 10.1029/2018GC007590 .
Collections
Suggested Citation
Marjanović, M., Carbotte, S. M., Carton, H. D., Nedimović, M. R., Canales, J. P., & Mutter, J. C. (2018). Crustal magmatic system beneath the East Pacific Rise (8°200 to 10°100N): Implications for tectonomagmatic segmentation and crustal melt transport at fast-spreading ridges. Geochemistry, Geophysics, Geosystems, 19, 4584–4611Related items
Showing items related by title, author, creator and subject.
-
Dispersal of hydrothermal vent larvae at East Pacific Rise 9-10 degrees N segment
Xu, Guangyu; McGillicuddy, Dennis J.; Mills, Susan W.; Mullineaux, Lauren S. (American Geophysical Union, 2018-11-06)A three‐dimensional, primitive‐equation, ocean circulation model coupled with a Lagrangian particle‐tracking algorithm is used to investigate the dispersal and settlement of planktonic larvae released from discrete ... -
Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26°10′N) : implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges
Canales, J. Pablo; Sohn, Robert A.; deMartin, Brian J. (American Geophysical Union, 2007-08-09)New seismic refraction data reveal that hydrothermal circulation at the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge at 26°10′N is not driven by energy extracted from shallow or mid-crustal ... -
Segmentation and crustal structure of the western Mid-Atlantic Ridge flank, 25°25′–27°10′N and 0–29 m.y.
Tucholke, Brian E.; Lin, Jian; Kleinrock, Martin C.; Tivey, Maurice A.; Reed, Thomas B.; Goff, John A.; Jaroslow, Gary E. (American Geophysical Union, 1997-05-10)We conducted a detailed geological-geophysical survey of the west flank of the Mid-Atlantic Ridge between 25°25′N and 27°10′N and from the ridge axis out to 29 Ma crust, acquiring Hydrosweep multibeam bathymetry, HAWAII ...