Discontinuities in soil strength contribute to destabilization of nutrient‐enriched creeks
Date
2018-08-20Author
Wigand, Cathleen
Concept link
Watson, Elizabeth
Concept link
Martin, Rose
Concept link
Johnson, David S.
Concept link
Warren, R. Scott
Concept link
Hanson, Alana
Concept link
Davey, Earl
Concept link
Johnson, Roxanne
Concept link
Deegan, Linda A.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/10694As published
https://doi.org/10.1002/ecs2.2329DOI
10.1002/ecs2.2329Abstract
In a whole‐ecosystem, nutrient addition experiment in the Plum Island Sound Estuary (Massachusetts), we tested the effects of nitrogen enrichment on the carbon and nitrogen contents, respiration, and strength of marsh soils. We measured soil shear strength within and across vegetation zones. We found significantly higher soil percent organic matter, carbon, and nitrogen in the long‐term enriched marshes and higher soil respiration rates with longer duration of enrichment. The soil strength was similar in magnitude across depths and vegetation zones in the reference creeks, but showed signs of significant nutrient‐mediated alteration in enriched creeks where shear strength at rooting depths of the low marsh–high marsh interface zone was significantly lower than at the sub‐rooting depths or in the creek bank vegetation zone. To more closely examine the soil strength of the rooting (10–30 cm) and sub‐rooting (40–60 cm) depths in the interface and creek bank vegetation zones, we calculated a vertical shear strength differential between these depths. We found significantly lower differentials in shear strength (rooting depth < sub‐rooting depths) in the enriched creeks and in the interface zones. The discontinuities in the vertical and horizontal shear strength across the enriched marshes may contribute to observed fracturing and slumping occurring in the marsh systems. Tide gauge data also showed a pattern of rapid sea level rise for the period of the study, and changes in plant distribution patterns were indicative of increased flooding. Longer exposure times to nutrient‐enriched waters and increased hydraulic energy associated with sea level rise may exacerbate creek bank sloughing. Additional research is needed, however, to better understand the interactions of nutrient enrichment and sea level rise on soil shear strength and stability of tidal salt marshes.
Description
© The Author(s),2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 9 (2018): e02329, doi:10.1002/ecs2.2329.
Collections
Suggested Citation
Ecosphere 9 (2018): e02329The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Methane gas hydrate effect on sediment acoustic and strength properties
Winters, William J.; Waite, William F.; Mason, D. H.; Gilbert, L. Y.; Pecher, Ingo A. (2006-04-08)To improve our understanding of the interaction of methane gas hydrate with host sediment, we studied: (1) the effects of gas hydrate and ice on acoustic velocity in different sediment types, (2) effect of different ... -
Averaging of fish target strength functions
Foote, Kenneth G. (Acoustical Society of America, 1980-02)A general model for averaging the acoustic target strength functions of fish is stated in calculable form. It accounts for the influences of the distribution of generally coupled spatial and orientation states of fish, ... -
Effects of normal stress variation on the strength and stability of creeping faults
Boettcher, Margaret S.; Marone, C. (American Geophysical Union, 2004-03-11)A central problem in studies of fault interaction and earthquake triggering is that of quantifying changes in frictional strength and the constitutive response caused by dynamic stressing. We imposed normal stress vibrations ...