• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • WHOI Technical Reports
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • WHOI Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Eddies, islands, and mixing

    Thumbnail
    View/Open
    WHOI-78-86.pdf (38.54Mb)
    Date
    1978-12
    Author
    Hogg, Nelson G.  Concept link
    Katz, Eli J.  Concept link
    Sanford, Thomas B.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/10630
    DOI
    10.1575/1912/10630
    Keyword
     Oceanic mixing; Turbulence; Ocean currents 
    Abstract
    As part of a field study of the relation between fine scale and large‐scale variations of water properties in the western North Atlantic, the waters in the vicinity of Bermuda were investigated in detail. Previous work in the area had revealed regions of intense temperature fine structure confined to the sides of the island. Generally quieter levels of activity elsewhere in the midocean have suggested that significant mixing might only occur at the solid and fluid boundaries of the ocean. During the course of our investigation, two Gulf Stream rings were found in the vicinity of the island. The exchange of water between them caused three regions of strong alongshore flow. In these three areas we find elevated levels of temperature fine structure in the upper 800 m as measured by the variance in the temperature gradient normalized by the square of the mean temperature gradient over the interval. The normalized temperature variances on small scales (0.2–1 m) are most energetic in patches tightly bound to the island sides, whereas the fine structure on larger scales (5–25 m) is also energetic away from the island in a region of outflow. Velocity profiles show that vertical scales shorten as one approaches the island, and the energy increases in the counterclockwise component. There is no correlation evident between the shear measurements of the internal wave field and the intensity of the fine structure. Possible mechanisms for the production of fine structure are explored within the context of these observations.
    Description
    Also published as Journal of Geophysical Research, 83(C6), 1978, pp. 2921–2938
    Collections
    • Physical Oceanography (PO)
    • WHOI Technical Reports
    Suggested Citation
    Hogg, N. G., Katz, E. J., & Sanford, T. B. (1978). Eddies, islands, and mixing. Woods Hole Oceanographic Institution. https://doi.org/10.1575/1912/10630
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Ocean Network Information Center (OCEANIC) developing an online ocean information system 

      Churgin, James (IAMSLIC, 1989)
    • Thumbnail

      Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean : a modeling study 

      Arruda, R.; Calil, Paulo H. R.; Bianchi, A. A.; Doney, Scott C.; Gruber, Nicolas; Lima, Ivan D.; Turi, G. (Copernicus Publications on behalf of the European Geosciences Union, 2015-10-12)
      We use an eddy-resolving, regional ocean biogeochemical model to investigate the main variables and processes responsible for the climatological spatio-temporal variability of pCO2 and the air-sea CO2 fluxes in the ...
    • Thumbnail

      Understanding the ocean carbon and sulfur cycles in the context of a variable ocean : a study of anthropogenic carbon storage and dimethylsulfide production in the Atlantic Ocean 

      Levine, Naomi M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-02)
      Anthropogenic activity is rapidly changing the global climate through the emission of carbon dioxide. Ocean carbon and sulfur cycles have the potential to impact global climate directly and through feedback loops. Numerical ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo